

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

May 14, 1993

Burlington Environmental Engineering

624878-7306 PROJECT NUMBER:

PROJECT NAME: Pier 91

LABORATORY WORK ORDER NUMBER: 31448

BURLINGTON ENVIRONMENTAL, INC. CORPORATE OFFICE

The samples were taken on 4/14/93 and were received at Sound on The samples were analyzed for Volatile Organics in accordance with EPA SW-846 Method 8240, Semivolatile Organics in Method 8270, Total Petroleum SW-846 accordance with EPA Hydrocarbons by EPA Method 418.1 modified for soil, and Total Petroleum Fuel Hydrocarbons by EPA Method 8015 modified. samples were qualitatively screened for total petroleum fuel hydrocarbons in accordance with WA State DOE Method WTPH-HCID. The densities of the oil samples were determined in accordance with Standard Methods for the Examination of Water and Wastewater (16th Ed.) Method 213 E.

#### VOLATILE ORGANICS

Samples 31448-1 through 31448-6 were analyzed on 4/20/93. Methylene chloride and acetone were detected in the method blanks at levels above the IDL. Results reported for these compounds in the associated samples were flagged B to indicate this. parameters were within acceptance limits.

#### SEMIVOLATILE ORGANICS

Samples 31448-1 through 31448-6 were extracted on 4/20/93 and analyzed on 4/21/93. Di-n-butylphthalate was detected in the method blank above the IDL. Results reported for this compound in the associated samples were flagged B to indicate this. OC parameters were within acceptance limits.

#### TOTAL PETROLEUM FUEL HYDROCARBONS

Samples 31448-1 through 31448-6 were extracted on 4/21/93 and analyzed on 4/22/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits.

#### TOTAL PETROLEUM HYDROCARBONS

Samples 31448-1 through 31448-6 were extracted on 4/19/93 and analyzed on 4/20/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits. **USEPA RCRA** 

3012504

PROJECT NUMBER: 624878-7306

PROJECT NAME:

Pier 91

LABORATORY WORK ORDER NUMBER: 31448

#### HYDROCARBON IDENTIFICATION

Samples 31448-7 and 31448-8 were extracted on 4/19/93 and analyzed on 4/20/93. No contamination above the PQL was present in the method blank.

#### SPECIFIC GRAVITY

The specific gravity for samples 31448-7 and 31448-8 was determined on 4/19/93.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental, Date: April 28, 1993

Technical Services

Report On: Analysis of Oil & Water Lab No.: 31448

Page 1 of 38

IDENTIFICATION:

Samples received on 04-14-93 Project: 624878-7306 Pier 91

#### ANALYSIS:

Lab Sample No. 31448-1

Client ID: CP-W10-0493

Matrix: Water

Volatile Organics by Method 8240 Date Analyzed: 4-20-93

| Compound                                                                                                                                                                                                                                                                        | Concentration ug/L               | PQL                                        | Flag |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|------|
| Compound  Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate |                                  | PQL  10 10 10 10 5 5 5 5 5 5 5 5 5 25 5 25 | Flag |
| Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane                                                                                                                                                     | ND<br>ND<br>ND<br>ND<br>ND<br>ND | 5<br>5<br>5<br>5<br>5<br>5                 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 2 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-1

Client ID: CP-W10-0493

Matrix: Water

8240 Continued . . .

| Compound                                                                                                                                                                          | Concentration ug/L                                         | PQL                                                            | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|------|
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | 14<br>ND<br>ND<br>ND<br>ND<br>ND<br>3.2<br>ND<br>9.5<br>ND | 5<br>5<br>5<br>25<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | J    |
| TOTAL MYTCHES                                                                                                                                                                     | 3.,                                                        |                                                                |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 103      | 88 - 110 | 81 - 117 |
|                                                       | 91       | 86 - 115 | 74 - 121 |
|                                                       | 102      | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 3 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-1

Client ID: CP-W10-0493

Matrix: Water

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-20-93 Date Analyzed: 4-21-93

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| Phenol                      | ND                 | 9.2 |      |
| bis(2-Chloroethyl) ether    | ND                 | 9.2 |      |
| 2-Chlorophenol              | ND                 | 9.2 |      |
| 1,3-Dichlorobenzene         | ND                 | 9.2 |      |
| 1,4-Dichlorobenzene         | ND                 | 9.2 |      |
| Benzyl Alcohol              | ND                 | 18  |      |
| 1,2-Dichlorobenzene         | ND                 | 9.2 |      |
| 2-Methylphenol              | ND                 | 9.2 |      |
| bis(2-Chloroisopropyl)ether | ND                 | 9.2 |      |
| 4-Methylphenol              | ND                 | 9.2 |      |
| N-Nitroso-Di-N-propylamine  | ND                 | 9.2 |      |
| Hexachloroethane            | ND                 | 9.2 |      |
| Nitrobenzene                | ND                 | 9.2 |      |
| Isophorone                  | ND                 | 9.2 |      |
| 2-Nitrophenol               | ND                 | 9.2 |      |
| 2,4-Dimethylphenol          | ND                 | 9.2 |      |
| Benzoic Acid                | ND                 | 46  |      |
| bis(2-Chloroethoxy)methane  | ND                 | 9.2 |      |
| 2,4-Dichlorophenol          | ND                 | 9.2 |      |
| 1,2,4-Trichlorobenzene      | ND                 | 9.2 |      |
| Naphthalene                 | 19                 | 9.2 |      |
| 4-Chloroaniline             | ND                 | 18  |      |
| Hexachlorobutadiene         | ND                 | 9.2 |      |
| 4-Chloro-3-methylphenol     | ND                 | 18  |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 4 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-1

Matrix: Water

Client ID: CP-W10-0493

EPA Method 8270 Continued

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| 2-Methylnaphthalene         | 24                 | 9.2 |      |
| Hexachlorocyclopentadiene   | ND                 | 9.2 |      |
| 2,4,6-Trichlorophenol       | ND                 | 9.2 |      |
| 2,4,5-Trichlorophenol       | ND                 | 9.2 |      |
| 2-Chloronaphthalene         | ND                 | 9.2 |      |
| 2-Nitroaniline              | ND                 | 46  |      |
| Dimethyl phthalate          | ND                 | 9.2 |      |
| Acenaphthylene              | ND                 | 9.2 |      |
| 2,6-Dinitrotoluene          | ND                 | 9.2 |      |
| 3-Nitroaniline              | ND                 | 46  |      |
| Acenaphthene                | 3.5                | 9.2 | J    |
| 2,4-Dinitrophenol           | ND                 | 46  |      |
| 4-Nitrophenol               | ND                 | 46  |      |
| Dibenzofuran                | 3.9                | 9.2 | J    |
| 2,4-Dinitrotoluene          | ND                 | 9.2 |      |
| Diethylphthalate            | ND                 | 9.2 |      |
| 4-Chlorophenyl phenyl ether | ND                 | 9.2 |      |
| Fluorene                    | 6.1                | 9.2 | J    |
| 4-Nitroaniline              | ND                 | 46  |      |
| 4,6-Dinitro-2-methylphenol  | ND                 | 46  |      |
| N-Nitrosodiphenylamine      | ND                 | 9.2 |      |
| 4-Bromophenyl phenyl ether  | ND                 | 9.2 |      |
| Hexachlorobenzene           | ND                 | 9.2 |      |
| Pentachlorophenol           | ND                 | 46  |      |
| Phenanthrene                | 4.3                | 9.2 | J    |
| Anthracene                  | ND                 | 9.2 |      |
| Di-n-butylphthalate         | 20                 | 9.2 | B1   |
|                             |                    |     |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 5 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-1

Client ID: CP-W10-0493

Matrix: Water

EPA Method 8270 Continued

| Bill Hoomon or a comment                                                                                                                                                                                                                                                 |                                          |                                                                                 |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|------|
| Compound                                                                                                                                                                                                                                                                 | Concentration<br>ug/L                    | PQL                                                                             | Flag |
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | ND N | 9.2<br>9.2<br>9.2<br>18<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | J    |
|                                                                                                                                                                                                                                                                          |                                          |                                                                                 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 69       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 71       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 83       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 22       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 45       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 79       | 10 - 123 | 19 - 122 |

# SOUND ANALYTICAL SERVICES, INC. 100 1, INC.

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 6 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-1

Client ID: CP-W10-0493

Matrix: Water

TPH Per EPA Method 418.1 Date Extracted: 4-19-93 Date Analyzed: 4-20-93

PQL Flaq Parameter Concentration, mq/L

Total Petroleum

27 1.0 Hydrocarbons

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-21-93 Date Analyzed: 4-22-93

Concentration, mq/L POL Flaq Parameter Total Petroleum 0.75 X2 Fuel Hydrocarbons ND

SURROGATE RECOVERY, %

1-chlorooctane 104 o-terphenyl 121

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 7 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-2

Client ID: CP-109M-0493

Matrix: Water

Volatile Organics by Method 8240 Date Analyzed: 4-20-93

|                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                            | 4           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------|
| Compound                                                                                                                                                                                                                                                                                                                            | Concentration ug/L                                         | PQL                                                                                        | Flag        |
| Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethane | ND ND ND ND 0.65 59 ND | 10<br>10<br>10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | B1, J<br>B2 |
| Dibromochloromethane 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                          | ND<br>ND                                                   | 5<br>5                                                                                     |             |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 8 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-2

Matrix: Water

Client ID: CP-109M-0493

8240 Continued . . .

| OZ 10 COMBINED                                                                                                                                                                    |                                          |                                       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|------|
| Compound                                                                                                                                                                          | Concentration ug/L                       | PQL                                   | Flag |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND N | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |      |
|                                                                                                                                                                                   |                                          |                                       |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 105      | 88 - 110 | 81 - 117 |
|                                                       | 90       | 86 - 115 | 74 - 121 |
|                                                       | 97       | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 9 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-2

Client ID: CP-109M-0493

Matrix: Water

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-20-93 Date Analyzed: 4-21-93

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| Phenol                      | ND                 | 9.4 |      |
| bis(2-Chloroethyl) ether    | ND                 | 9.4 |      |
| 2-Chlorophenol              | ND                 | 9.4 |      |
| 1,3-Dichlorobenzene         | ND                 | 9.4 |      |
| 1,4-Dichlorobenzene         | ND                 | 9.4 |      |
| Benzyl Alcohol              | ND                 | 19  |      |
| 1,2-Dichlorobenzene         | ND                 | 9.4 |      |
| 2-Methylphenol              | ND                 | 9.4 |      |
| bis(2-Chloroisopropyl)ether | ND                 | 9.4 |      |
| 4-Methylphenol              | ND                 | 9.4 |      |
| N-Nitroso-Di-N-propylamine  | ND                 | 9.4 |      |
| Hexachloroethane            | ND                 | 9.4 |      |
| Nitrobenzene                | ND                 | 9.4 |      |
| Isophorone                  | ND                 | 9.4 |      |
| 2-Nitrophenol               | ND                 | 9.4 |      |
| 2,4-Dimethylphenol          | ND                 | 9.4 |      |
| Benzoic Acid                | ND                 | 47  |      |
| bis(2-Chloroethoxy)methane  | ND                 | 9.4 |      |
| 2,4-Dichlorophenol          | ND                 | 9.4 |      |
| 1,2,4-Trichlorobenzene      | ND                 | 9.4 |      |
| Naphthalene                 | ND                 | 9.4 |      |
| 4-Chloroaniline             | ND                 | 19  |      |
| Hexachlorobutadiene         | ND                 | 9.4 |      |
| 4-Chloro-3-methylphenol     | ND                 | 19  |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 10 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-2

Client ID: CP-109M-0493

Matrix: Water

EPA Method 8270 Continued

| Compound                    | Concentration ug/L | PQL | Flag  |
|-----------------------------|--------------------|-----|-------|
| 2-Methylnaphthalene         | ND                 | 9.4 |       |
| Hexachlorocyclopentadiene   | ND                 | 9.4 |       |
| 2,4,6-Trichlorophenol       | ND                 | 9.4 |       |
| 2,4,5-Trichlorophenol       | ND                 | 9.4 |       |
| 2-Chloronaphthalene         | ND                 | 9.4 |       |
| 2-Nitroaniline              | ND                 | 47  |       |
| Dimethyl phthalate          | ND                 | 9.4 |       |
| Acenaphthylene              | ND                 | 9.4 |       |
| 2,6-Dinitrotoluene          | ND                 | 9.4 |       |
| 3-Nitroaniline              | ND                 | 47  |       |
| Acenaphthene                | ND                 | 9.4 |       |
| 2,4-Dinitrophenol           | ND                 | 47  |       |
| 4-Nitrophenol               | ND                 | 47  |       |
| Dibenzofuran                | ND                 | 9.4 |       |
| 2,4-Dinitrotoluene          | ND                 | 9.4 |       |
| Diethylphthalate            | ND                 | 9.4 |       |
| 4-Chlorophenyl phenyl ether | ND                 | 9.4 |       |
| Fluorene                    | ND                 | 9.4 |       |
| 4-Nitroaniline              | ND                 | 47  |       |
| 4,6-Dinitro-2-methylphenol  | ND                 | 47  |       |
| N-Nitrosodiphenylamine      | ND                 | 9.4 | 1     |
| 4-Bromophenyl phenyl ether  | ND                 | 9.4 |       |
| Hexachlorobenzene           | ND                 | 9.4 |       |
| Pentachlorophenol           | ND                 | 47  |       |
| Phenanthrene                | ND                 | 9.4 |       |
| Anthracene                  | ND                 | 9.4 |       |
| Di-n-butylphthalate         | 5.2                | 9.4 | B1, J |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 11 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-2

Client ID: CP-109M-0493

Matrix: Water

EPA Method 8270 Continued

| Compound                                                                                                                                                                                                                                            | Concentration<br>ug/L                    | PQL                                                               | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|------|
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene | ND N | 9.4<br>9.4<br>19<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 |      |
| Benzo(g,h,i)perylene                                                                                                                                                                                                                                | ND                                       | 9.4                                                               |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 78       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 64       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 85       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 20       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 44       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 68       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 12 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-2

Matrix: Water

Client ID: CP-109M-0493

TPH Per EPA Method 418.1 Date Extracted: 4-19-93 Date Analyzed: 4-20-93

<u>Parameter</u> <u>Concentration, mg/L</u> <u>PQL</u> <u>Flag</u>

Total Petroleum Hydrocarbons

44 1.0

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-21-93
Date Analyzed: 4-22-93

Parameter Concentration, mg/L PQL Flag

Total Petroleum

Fuel Hydrocarbons ND 0.75

SURROGATE RECOVERY, %

1-chlorooctane 96 o-terphenyl 126

ND - Not Detected POL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 13 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-3

Client ID: CP-109-0493

Matrix: Water

Volatile Organics by Method 8240 Date Analyzed: 4-20-93

|                                | 1                  |          |       |
|--------------------------------|--------------------|----------|-------|
| Compound                       | Concentration ug/L | PQL      | Flag  |
| Chloromethane                  | ND<br>ND           | 10<br>10 |       |
| Bromomethane<br>Vinyl Chloride | ND<br>ND           | 10       |       |
| Chloroethane                   | 76                 | 10       |       |
| Methylene Chloride             | ND                 | 5        |       |
| Acetone                        | 9.2                | 50       | B1, J |
| Carbon Disulfide               | ND                 | 5        |       |
| 1,1-Dichloroethene             | ND                 | 5        |       |
| 1,1-Dichloroethane             | 2.8                | 5        | J     |
| 1,2-Dichloroethene (Total)     | ND                 | 5        |       |
| Chloroform                     | ND                 | 5        |       |
| 1,2-Dichloroethane             | ND                 | 5        |       |
| 2-Butanone                     | ND                 | 25       |       |
| 1,1,1-Trichloroethane          | ND                 | 5        |       |
| Carbon Tetrachloride           | ND                 | 5        |       |
| Vinyl Acetate                  | ND                 | 25       |       |
| Bromodichloromethane           | ND                 | 5        |       |
| 1,2-Dichloropropane            | ND                 | 5<br>5   |       |
| Cis-1,3-Dichloropropene        | ND<br>ND           | 5        |       |
| Trichloroethene                | ND<br>ND           | 5        |       |
| Dibromochloromethane           | ND<br>ND           | 5        |       |
| 1,1,2-Trichloroethane          | ND                 |          |       |

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 14 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-3

Client ID: CP-109-0493

Matrix: Water

8240 Continued . . .

| Compound         Concentration ug/L         PQL         Flag           Benzene         29         5           Trans-1,3-Dichloropropene         ND         5           Bromoform         ND         5           4-Methyl-2-Pentanone         ND         25           2-Hexanone         ND         5           Tetrachloroethene         ND         5           1,1,2,2-Tetrachloroethane         ND         5           Toluene         6.6         5           Chlorobenzene         ND         5           Ethyl Benzene         3.4         5         J           Styrene         ND         5           Total Xylenes         4.8         5         J | OZ TO CONCINCE TO                                                                                                                                           |                                         |                                                                                              |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|------|
| Trans-1,3-Dichloropropene       ND       5         Bromoform       ND       5         4-Methyl-2-Pentanone       ND       25         2-Hexanone       ND       5         Tetrachloroethene       ND       5         1,1,2,2-Tetrachloroethane       ND       5         Toluene       6.6       5         Chlorobenzene       ND       5         Ethyl Benzene       3.4       5         Styrene       ND       5                                                                                                                                                                                                                                           | Compound                                                                                                                                                    |                                         | PQL                                                                                          | Flag |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene | ND ND ND ND ND ND ND S ND S ND S ND S N | 5<br>5<br>25<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 102      | 88 - 110 | 81 - 117 |
|                                                       | 91       | 86 - 115 | 74 - 121 |
|                                                       | 95       | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 15 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-3

Client ID: CP-109-0493

Matrix: Water

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-20-93 Date Analyzed: 4-21-93

|                    |                                          | -                                                                                                                                                                                                                                                                         |
|--------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Concentration ug/L | PQL                                      | Flag                                                                                                                                                                                                                                                                      |
| ND<br>ND           | 9.1                                      |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
| ND                 | 9.1                                      |                                                                                                                                                                                                                                                                           |
| ND                 | 18                                       |                                                                                                                                                                                                                                                                           |
| ND                 | 9.1                                      |                                                                                                                                                                                                                                                                           |
| ND                 | 9.1                                      |                                                                                                                                                                                                                                                                           |
| ND                 | 9.1                                      |                                                                                                                                                                                                                                                                           |
| ND                 |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
| 1                  |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
|                    |                                          |                                                                                                                                                                                                                                                                           |
| ND<br>ND           | 18                                       |                                                                                                                                                                                                                                                                           |
|                    | ND N | ND 9.1 |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91

Page 16 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-3

Client ID: CP-109-0493

Matrix: Water

EPA Method 8270 Continued

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| 2-Methylnaphthalene         | 62                 | 9.1 |      |
| Hexachlorocyclopentadiene   | ND                 | 9.1 |      |
| 2,4,6-Trichlorophenol       | ND                 | 9.1 |      |
| 2,4,5-Trichlorophenol       | ND                 | 9.1 |      |
| 2-Chloronaphthalene         | ND                 | 9.1 |      |
| 2-Nitroaniline              | ND                 | 45  |      |
| Dimethyl phthalate          | ND                 | 9.1 |      |
| Acenaphthylene              | ND                 | 9.1 |      |
| 2,6-Dinitrotoluene          | ND                 | 9.1 | 11   |
| 3-Nitroaniline              | ND                 | 45  |      |
| Acenaphthene                | ND                 | 9.1 |      |
| 2,4-Dinitrophenol           | ND                 | 45  |      |
| 4-Nitrophenol               | ND                 | 45  |      |
| Dibenzofuran                | 1.7                | 9.1 | J    |
| 2,4-Dinitrotoluene          | ND                 | 9.1 |      |
| Diethylphthalate            | ND                 | 9.1 |      |
| 4-Chlorophenyl phenyl ether | ND                 | 9.1 |      |
| Fluorene                    | 3.8                | 9.1 | J    |
| 4-Nitroaniline              | ND                 | 4.5 |      |
| 4,6-Dinitro-2-methylphenol  | ND                 | 45  |      |
| N-Nitrosodiphenylamine      | ND                 | 9.1 |      |
| 4-Bromophenyl phenyl ether  | ND                 | 9.1 |      |
| Hexachlorobenzene           | ND                 | 9.1 |      |
| Pentachlorophenol           | ND                 | 45  |      |
| Phenanthrene                | 2.5                | 9.1 | J    |
| Anthracene                  | ND                 | 9.1 |      |
| Di-n-butylphthalate         | 11                 | 9.1 | B1   |
|                             |                    |     |      |

ND - Not Detected

PQL - Practical Quantitation Limit

### SOUND ANALYTICAL SERVICES, INC. Services, Inc.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 17 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-3

Client ID: CP-109-0493

Matrix: Water

EPA Method 8270 Continued

| Compound                                                                                                                                                                                                                                                                 | Concentration ug/L                       | PQL                                                                      | Flag |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------|------|
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | ND N | 9.1<br>9.1<br>9.1<br>18<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate                                                                                                                            | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| Compound                                                                                                                             | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 67       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 75       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 74       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 20       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 41       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 83       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 18 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-3

Client ID: CP-109-0493

Matrix: Water

TPH Per EPA Method 418.1 Date Extracted: 4-19-93 Date Analyzed: 4-20-93

Concentration, mq/L PQL Flaq Parameter

Total Petroleum Hydrocarbons

1.0 130

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-21-93 Date Analyzed: 4-22-93

Concentration, mq/L PQL Flaq Parameter

Total Petroleum

4.1 0.75 X2 Fuel Hydrocarbons

Gasoline, Diesel TPH as

SURROGATE RECOVERY, %

105 1-chlorooctane o-terphenyl 117

ND - Not Detected POL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 19 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-4

Client ID: CP-116M-0493

Matrix: Water

Volatile Organics by Method 8240 Date Analyzed: 4-20-93

|                            |                    |         | 4           |
|----------------------------|--------------------|---------|-------------|
| Compound                   | Concentration ug/L | PQL     | Flag        |
| Chloromethane              | ND                 | 10      |             |
| Bromomethane               | ND                 | 10      |             |
| Vinyl Chloride             | ND<br>ND           | 10      |             |
| Chloroethane               | 0.67               | 10<br>5 | р1 т        |
| Methylene Chloride Acetone | 58                 | 50      | B1, J<br>B2 |
| Carbon Disulfide           | ND                 | 5       | DZ.         |
| 1,1-Dichloroethene         | ND                 | 5       |             |
| 1,1-Dichloroethane         | ND                 | 5       |             |
| 1,2-Dichloroethene (Total) | ND                 | 5       |             |
| Chloroform                 | 0.70               | 5       | J           |
| 1,2-Dichloroethane         | ND                 | 5       |             |
| 2-Butanone                 | ND                 | 25      |             |
| 1,1,1-Trichloroethane      | ND                 | 5       |             |
| Carbon Tetrachloride       | ND                 | 5       |             |
| Vinyl Acetate              | ND                 | 25      |             |
| Bromodichloromethane       | ND                 | 5       |             |
| 1,2-Dichloropropane        | ND                 | 5       |             |
| Cis-1,3-Dichloropropene    | ND                 | 5       |             |
| Trichloroethene            | ND                 | 5       |             |
| Dibromochloromethane       | ND                 | 5       |             |
| 1,1,2-Trichloroethane      | ND                 | 5       |             |
|                            |                    |         |             |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 20 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-4

Client ID: CP-116M-0493

Matrix: Water

8240 Continued . .

| OZ TO CONCINCE                                                                                                                                                                    |                                          |                                                                                              | -    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|------|
| Compound                                                                                                                                                                          | Concentration ug/L                       | PQL                                                                                          | Flag |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND N | 5<br>5<br>5<br>25<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |      |
|                                                                                                                                                                                   | 1                                        |                                                                                              | -    |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 109      | 88 - 110 | 81 - 117 |
|                                                       | 88       | 86 - 115 | 74 - 121 |
|                                                       | 95       | 76 - 114 | 70 - 121 |

# SOUND ANALYTICAL SERVICES, INC. STATE OF THE

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 21 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-4

Client ID: CP-116M-0493

Matrix: Water

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-20-93 Date Analyzed: 4-21-93

| Compound                                                                                                                                                                                                                                                                                              | Concentration ug/L                           | PQL                                                                | Flag |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|------|
| Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid | ug/L  ND | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | Flag |
| <pre>bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene</pre>                                                                                                                                                                                                                       | ND<br>ND<br>ND                               | 9.4<br>9.4<br>9.4                                                  |      |
| Naphthalene<br>4-Chloroaniline<br>Hexachlorobutadiene<br>4-Chloro-3-methylphenol                                                                                                                                                                                                                      | ND<br>ND<br>ND<br>ND                         | 9.4<br>19<br>9.4<br>19                                             |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 22 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-4

Matrix: Water

Client ID: CP-116M-0493

EPA Method 8270 Continued

|                             | Concentration | DOI | Flag |
|-----------------------------|---------------|-----|------|
| Compound                    | ug/L          | PQL | riay |
| 2-Methylnaphthalene         | ND            | 9.4 |      |
| Hexachlorocyclopentadiene   | ND            | 9.4 |      |
| 2,4,6-Trichlorophenol       | ND            | 9.4 |      |
| 2,4,5-Trichlorophenol       | ND            | 9.4 |      |
| 2-Chloronaphthalene         | ND            | 9.4 |      |
| 2-Nitroaniline              | ND            | 47  |      |
| Dimethyl phthalate          | ND            | 9.4 |      |
| Acenaphthylene              | ND            | 9.4 |      |
| 2,6-Dinitrotoluene          | ND            | 9.4 |      |
| 3-Nitroaniline              | ND            | 47  |      |
| Acenaphthene                | ND            | 9.4 |      |
| 2,4-Dinitrophenol           | ND            | 47  |      |
| 4-Nitrophenol               | ND            | 47  |      |
| Dibenzofuran                | ND            | 9.4 |      |
| 2,4-Dinitrotoluene          | ND            | 9.4 |      |
| Diethylphthalate            | ND            | 9.4 |      |
| 4-Chlorophenyl phenyl ether | ND            | 9.4 |      |
| Fluorene                    | ND            | 9.4 |      |
| 4-Nitroaniline              | ND            | 47  |      |
| 4,6-Dinitro-2-methylphenol  | ND            | 47  |      |
| N-Nitrosodiphenylamine      | ND            | 9.4 |      |
| 4-Bromophenyl phenyl ether  | ND            | 9.4 |      |
| Hexachlorobenzene           | ND            | 9.4 |      |
| Pentachlorophenol           | ND            | 47  |      |
| Phenanthrene                | ND            | 9.4 |      |
| Anthracene                  | ND            | 9.4 |      |
| Di-n-butylphthalate         | 8.0           | 9.4 | B1,  |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 23 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-4

Matrix: Water

Client ID: CP-116M-0493

EPA Method 8270 Continued

| EFA Mechod 02/0 Concinaca                                                                                                                                                                                                                                                |                                          |                                                                    | -    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|------|
| Compound                                                                                                                                                                                                                                                                 | Concentration ug/L                       | PQL                                                                | Flag |
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | ND N | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 |      |
|                                                                                                                                                                                                                                                                          |                                          | <del></del>                                                        | +    |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 79       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 66       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 88       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 22       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 46       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 75       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 24 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-4

Matrix: Water

Client ID: CP-116M-0493

TPH Per EPA Method 418.1 Date Extracted: 4-19-93 Date Analyzed: 4-20-93

Parameter Concentration, mg/L PQL Flag

Total Petroleum

Hydrocarbons 32 1.0

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 4-21-93

Date Analyzed: 4-22-93

Parameter Concentration, mg/L PQL Flag

Total Petroleum
Fuel Hydrocarbons ND 0.75

SURROGATE RECOVERY, %
1-chlorooctane 92
o-terphenyl 112

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 25 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-5

Client ID: CP-116-0493

Matrix: Water

Volatile Organics by Method 8240 Date Analyzed: 4-20-93

| Compound                   | Concentration ug/L | PQL | Flag  |
|----------------------------|--------------------|-----|-------|
| Chloromethane              | ND                 | 10  |       |
| Bromomethane               | ND                 | 10  |       |
| Vinyl Chloride             | 7.5                | 10  | J     |
| Chloroethane               | 4.7                | 10  | J     |
| Methylene Chloride         | ND                 | 5   |       |
| Acetone                    | 18                 | 50  | B1, J |
| Carbon Disulfide           | ND                 | 5   |       |
| 1,1-Dichloroethene         | 0.21               | 5   | J     |
| 1,1-Dichloroethane         | 96                 | 5   |       |
| 1,2-Dichloroethene (Total) | ND                 | 5   |       |
| Chloroform                 | ND                 | 5   |       |
| 1,2-Dichloroethane         | ND                 | 5   | 1     |
| 2-Butanone                 | 0.96               | 25  | J     |
| 1,1,1-Trichloroethane      | ND                 | 5   |       |
| Carbon Tetrachloride       | ND                 | 5   |       |
| Vinyl Acetate              | ND                 | 25  |       |
| Bromodichloromethane       | ND                 | 5   |       |
| 1,2-Dichloropropane        | ND                 | 5   |       |
| Cis-1,3-Dichloropropene    | ND                 | 5   |       |
| Trichloroethene            | ND                 | 5   |       |
| Dibromochloromethane       | ND                 | 5   |       |
| 1,1,2-Trichloroethane      | ND                 | 5   |       |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 26 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-5

Client ID: CP-116-0493

Matrix: Water

8240 Continued . .

| Benzene Z<br>Trans-1,3-Dichloropropene                                                                                  | ion<br>g/L<br>23        | PQL 5                                                                                        | Flag |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------|------|
| Trans-1,3-Dichloropropene                                                                                               |                         | 5<br>5                                                                                       |      |
| 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene | ND ND ND ND ND ND L2 ND | 5<br>25<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

| Volatile Surrogates   |                     |                  | T 1 - 11 - |
|-----------------------|---------------------|------------------|------------|
| Surrogate<br>Compound | Percent<br>Recovery | Control<br>Water | Soil       |
| Compound              |                     |                  |            |
| Toluene - D8          | 103                 | 88 - 110         | 81 - 117   |
| Bromofluorobenzene    | 91                  | 86 - 115         | 74 - 121   |
| 1,2-Dichloroethane-D4 | 94                  | 76 - 114         | 70 - 121   |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 27 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-5

Client ID: CP-116-0493

Matrix: Water

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-20-93 Date Analyzed: 4-21-93

|                             |                    |     | +    |
|-----------------------------|--------------------|-----|------|
| Compound                    | Concentration ug/L | PQL | Flag |
| Phenol                      | ND                 | 20  |      |
| bis(2-Chloroethyl) ether    | ND                 | 20  |      |
| 2-Chlorophenol              | ND                 | 20  |      |
| 1,3-Dichlorobenzene         | ND                 | 20  |      |
| 1,4-Dichlorobenzene         | ND                 | 20  |      |
| Benzyl Alcohol              | ND                 | 40  |      |
| 1,2-Dichlorobenzene         | ND                 | 20  |      |
| 2-Methylphenol              | ND                 | 20  |      |
| bis(2-Chloroisopropyl)ether | ND                 | 20  |      |
| 4-Methylphenol              | ND                 | 20  |      |
| N-Nitroso-Di-N-propylamine  | ND                 | 20  |      |
| Hexachloroethane            | ND                 | 20  |      |
| Nitrobenzene                | ND                 | 20  |      |
| Isophorone                  | ND                 | 20  |      |
| 2-Nitrophenol               | ND                 | 20  | -    |
| 2,4-Dimethylphenol          | 15                 | 20  | J    |
| Benzoic Acid                | ND                 | 100 |      |
| bis(2-Chloroethoxy)methane  | ND                 | 20  |      |
| 2,4-Dichlorophenol          | ND                 | 20  |      |
| 1,2,4-Trichlorobenzene      | ND                 | 20  |      |
| Naphthalene                 | ND                 | 20  |      |
| 4-Chloroaniline             | ND                 | 40  |      |
| Hexachlorobutadiene         | ND                 | 20  |      |
| 4-Chloro-3-methylphenol     | 200                | 40  |      |
|                             |                    |     |      |

ND - Not Detected

POL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 28 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-5

Client ID: CP-116-0493

Matrix: Water

EPA Method 8270 Continued

| Compound                    | Concentration ug/L | PQL | Flag  |
|-----------------------------|--------------------|-----|-------|
| 2-Methylnaphthalene         | ND                 | 20  |       |
| Hexachlorocyclopentadiene   | ND                 | 20  |       |
| 2,4,6-Trichlorophenol       | ND                 | 20  |       |
| 2,4,5-Trichlorophenol       | ND                 | 20  |       |
| 2-Chloronaphthalene         | ND                 | 20  |       |
| 2-Nitroaniline              | ND                 | 100 |       |
| Dimethyl phthalate          | ND                 | 20  |       |
| Acenaphthylene              | ND                 | 20  |       |
| 2,6-Dinitrotoluene          | ND                 | 20  |       |
| 3-Nitroaniline              | ND                 | 100 |       |
| Acenaphthene                | 2.4                | 20  | J     |
| 2,4-Dinitrophenol           | ND                 | 100 |       |
| 4-Nitrophenol               | ND                 | 100 |       |
| Dibenzofuran                | ND                 | 20  |       |
| 2,4-Dinitrotoluene          | ND                 | 20  |       |
| Diethylphthalate            | ND                 | 20  |       |
| 4-Chlorophenyl phenyl ether | ND                 | 20  |       |
| Fluorene                    | ND                 | 20  |       |
| 4-Nitroaniline              | ND                 | 100 |       |
| 4,6-Dinitro-2-methylphenol  | ND                 | 100 |       |
| N-Nitrosodiphenylamine      | ND                 | 20  |       |
| 4-Bromophenyl phenyl ether  | ND                 | 20  |       |
| Hexachlorobenzene           | ND                 | 20  |       |
| Pentachlorophenol           | ND                 | 100 |       |
| Phenanthrene                | 1.9                | 20  | J     |
| Anthracene                  | ND                 | 20  |       |
| Di-n-butylphthalate         | 16                 | 20  | B1, J |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 29 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-5

Client ID: CP-116-0493

Matrix: Water

EPA Method 8270 Continued

| LIA Meemod 0270 comerman                                                                                                                                                                                                                                                 |                                          |                                                                                  |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|------|
| Compound                                                                                                                                                                                                                                                                 | Concentration<br>ug/L                    | PQL                                                                              | Flag |
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | ND N | 20<br>20<br>20<br>40<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |      |
|                                                                                                                                                                                                                                                                          |                                          |                                                                                  | +    |

ND - Not Detected

PQL - Practical Quantitation Limit

| Semi-volatile Surroga                                                                                                                | ces      | <del></del> |          |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------|
| Surrogate                                                                                                                            | Percent  | Control     | Limits   |
| Compound                                                                                                                             | Recovery | Water       | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 67       | 35 - 114    | 23 - 120 |
|                                                                                                                                      | 87       | 43 - 116    | 30 - 115 |
|                                                                                                                                      | 90       | 33 - 141    | 18 - 137 |
|                                                                                                                                      | 22       | 10 - 94     | 24 - 113 |
|                                                                                                                                      | 45       | 21 - 100    | 25 - 121 |
|                                                                                                                                      | 89       | 10 - 123    | 19 - 122 |

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91

Page 30 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-5

Client ID: CP-116-0493

Matrix: Water

TPH Per EPA Method 418.1 Date Extracted: 4-19-93 Date Analyzed: 4-20-93

PQL Flag Parameter Concentration, mg/L

Total Petroleum Hydrocarbons

86

1.0

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-21-93 Date Analyzed: 4-22-93

PQL Flaq Concentration, mq/L Parameter

Total Petroleum Fuel Hydrocarbons

5.1

0.75

X2

Gasoline, Diesel TPH as

SURROGATE RECOVERY, %

1-chlorooctane 98 o-terphenyl 119

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 31 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-6

Client ID: CP-39-3-0493

Matrix: Water

Volatile Organics by Method 8240 Date Analyzed: 4-20-93

| Compound                                                                                                                                                                                                                                                                                                       | Concentration ug/L                                           | PQL                                         | Flag                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|---------------------|
| Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane | ND ND 4.1 130 1.0 4.4 ND | PQL  10 10 10 10 5 50 5 5 5 5 5 5 5 5 5 5 5 | J<br>B1, J<br>B1, J |
| Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane                                                                                                                                                                                                                             | ND<br>ND<br>ND<br>ND                                         | 5<br>5<br>5                                 |                     |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 32 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-6

Client ID: CP-39-3-0493

Matrix: Water

8240 Continued . . .

| 8240 Conclined                                                                                                                                                                    |                                                           |                                       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|------|
| Compound                                                                                                                                                                          | Concentration ug/L                                        | PQL                                   | Flag |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | 14<br>ND<br>ND<br>ND<br>ND<br>ND<br>6.9<br>ND<br>11<br>ND | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |      |
|                                                                                                                                                                                   |                                                           |                                       |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 104      | 88 - 110 | 81 - 117 |
|                                                       | 90       | 86 - 115 | 74 - 121 |
|                                                       | 94       | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 33 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-6

Client ID: CP-39-3-0493

Matrix: Water

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-20-93 Date Analyzed: 4-21-93

|                                                | A                  |          |      |
|------------------------------------------------|--------------------|----------|------|
| Compound                                       | Concentration ug/L | PQL      | Flag |
| Phenol bis(2-Chloroethyl) ether                | ND<br>ND           | 10<br>10 |      |
| 2-Chlorophenol                                 | ND                 | 10       |      |
| 1,3-Dichlorobenzene                            | ND<br>ND           | 10<br>10 |      |
| 1,4-Dichlorobenzene Benzyl Alcohol             | ND ND              | 20       |      |
| 1,2-Dichlorobenzene                            | ND                 | 10       |      |
| 2-Methylphenol                                 | ND                 | 10       |      |
| bis(2-Chloroisopropyl)ether                    | ND                 | 10       |      |
| 4-Methylphenol                                 | ND<br>ND           | 10<br>10 |      |
| N-Nitroso-Di-N-propylamine<br>Hexachloroethane | ND<br>ND           | 10       |      |
| Nitrobenzene                                   | ND                 | 10       |      |
| Isophorone                                     | ND                 | 10       |      |
| 2-Nitrophenol                                  | ND                 | 10       |      |
| 2,4-Dimethylphenol                             | ND                 | 10       |      |
| Benzoic Acid<br>bis(2-Chloroethoxy)methane     | ND<br>ND           | 50<br>10 |      |
| 2,4-Dichlorophenol                             | ND                 | 10       |      |
| 1,2,4-Trichlorobenzene                         | ND                 | 10       |      |
| Naphthalene                                    | 3.2                | 10       | J    |
| 4-Chloroaniline                                | ND                 | 20       |      |
| Hexachlorobutadiene                            | ND<br>ND           | 10 20    |      |
| 4-Chloro-3-methylphenol                        | IND                | 20       |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 34 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-6

Matrix: Water

EPA Method 8270 Continued

Client ID: CP-39-3-0493

| Compound                                         | Concentration ug/L | PQL | Flag |
|--------------------------------------------------|--------------------|-----|------|
|                                                  | 35                 | 10  |      |
| 2-Methylnaphthalene<br>Hexachlorocyclopentadiene | ND                 | 10  |      |
| 2,4,6-Trichlorophenol                            | ND                 | 10  |      |
| 2,4,5-Trichlorophenol                            | ND                 | 10  |      |
| 2-Chloronaphthalene                              | ND                 | 10  |      |
| 2-Nitroaniline                                   | ND                 | 50  |      |
| Dimethyl phthalate                               | ND                 | 10  |      |
| Acenaphthylene                                   | ND                 | 10  |      |
| 2,6-Dinitrotoluene                               | ND                 | 10  |      |
| 3-Nitroaniline                                   | ND                 | 50  |      |
| Acenaphthene                                     | 7.3                | 10  | J    |
| 2,4-Dinitrophenol                                | ND                 | 50  |      |
| 4-Nitrophenol                                    | ND                 | 50  |      |
| Dibenzofuran                                     | ND                 | 10  |      |
| 2,4-Dinitrotoluene                               | ND                 | 10  |      |
| Diethylphthalate                                 | ND                 | 10  |      |
| 4-Chlorophenyl phenyl ether                      | ND                 | 10  |      |
| Fluorene                                         | 10                 | 10  |      |
| 4-Nitroaniline                                   | ND                 | 50  |      |
|                                                  | ND                 | 50  |      |
| 4,6-Dinitro-2-methylphenol                       | ND                 | 10  |      |
| N-Nitrosodiphenylamine                           | ND<br>ND           | 10  |      |
| 4-Bromophenyl phenyl ether<br>Hexachlorobenzene  | ND<br>ND           | 10  |      |
|                                                  | ND                 | 50  |      |
| Pentachlorophenol                                | 4.2                | 10  | J    |
| Phenanthrene                                     | ND ND              | 10  |      |
| Anthracene                                       | 11                 | 10  | В1   |
| Di-n-butylphthalate                              | 11                 | 10  | PI   |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 35 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-6

Client ID: CP-39-3-0493

Matrix: Water

EPA Method 8270 Continued

| Compound                                                                                                                                                                                                                                                                 | Concentration ug/L                       | PQL                                                            | Flag |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|------|
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | ND N | 10<br>10<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 72       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 79       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 78       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 25       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 50       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 83       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 36 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-6

Client ID: CP-39-3-0493

Matrix: Water

TPH Per EPA Method 418.1 Date Extracted: 4-19-93 Date Analyzed: 4-20-93

PQL Flaq Concentration, mg/L Parameter Total Petroleum 54 1.0 Hydrocarbons

> TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 4-21-93

Date Analyzed: 4-22-93

PQL Flaq Concentration, mq/L Parameter Total Petroleum X2 0.75 1.6 Fuel Hydrocarbons Gasoline TPH as SURROGATE RECOVERY, % 105 1-chlorooctane 128 o-terphenyl

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 37 of 38 Lab No. 31448 April 28, 1993

Lab Sample No. 31448-7

Matrix: Oil

o-terphenyl

Client ID: CP-109-0493

WTPH-HCID

Date Extracted: 4-19-93 Date Analyzed: 4-20-93

| Parameters              | Concentration, mg/kg | Flag |
|-------------------------|----------------------|------|
| Gasoline<br>(C7-C12)    | > 20                 |      |
| Diesel<br>(> C12 - C24) | > 50                 |      |
| Heavy Oil               | > 100                |      |
|                         |                      |      |
| SURROGATE RECOVERY, %   |                      |      |
| 1-chlorooctane          |                      | X10  |

ND - Not Detected POL - Practical Quantitation Limit

Parameter Result
Specific gravity 0.8947

Continued . . . .

X10

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 38 of 38

Lab No. 31448 April 28, 1993

Lab Sample No. 31448-8

Client ID: CP-39-3-0493

Matrix: Oil

WTPH-HCID

Date Extracted: 4-19-93 Date Analyzed: 4-20-93

 Parameters
 Concentration, mg/kg
 Flag

 Gasoline (C7-C12)
 > 20

 Diesel (> C12-C24)
 > 50

 Heavy Oil (C24+)
 > 100

SURROGATE RECOVERY, %

1-chlorooctane X10 o-terphenyl X10

ND - Not Detected PQL - Practical Quantitation Limit

<u>Parameter</u>

Specific gravity

0.8745

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

### VOLATILE ORGANICS PER EPA METHOD 8240

### Page 1 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31448qc1

Units:

ug/L

Date:

April 28, 1993

Blank No: V9981

| METHOD | BLANK |
|--------|-------|
|--------|-------|

| Compound                   | Result | PQL         | Flags |
|----------------------------|--------|-------------|-------|
| Chloromethane              | ND     | 10          |       |
| Bromomethane               | ND     | 10          |       |
| Vinyl Chloride             | ND     | 10          |       |
| Chloroethane               | ND     | 10          |       |
| Methylene Chloride         | 7.7    | 5           |       |
| Acetone                    | 4.9    | 50          | J     |
| Carbon Disulfide           | ND     | 5           |       |
| 1,1-Dichloroethene         | ND     | 5           |       |
| 1,1-Dichloroethane         | ND     | 5           |       |
| 1,2-Dichloroethene (Total) | ND     | 5           |       |
| Chloroform                 | ND     | 5           |       |
| 1,2-Dichloroethane         | ND     | 5           |       |
| 2-Butanone                 | ND     | 25          |       |
| 1,1,1-Trichloroethane      | ND     | 5           |       |
| Carbon Tetrachloride       | ND     | 5           |       |
| Vinyl Acetate              | ND     | 25          |       |
| Bromodichloromethane       | ND     | 5           |       |
| 1,2-Dichloropropane        | ND     | 5           |       |
| Cis-1,3-Dichloropropene    | ND     | 5           |       |
| Trichloroethene            | ND     | 5           |       |
| Dibromochloromethane       | ND     | 5           |       |
| 1,1,2-Trichloroethane      | ND     | 5           |       |
| Benzene                    | ND     | 5           |       |
| Trans-1,3-Dichloropropene  | ND     | 5           |       |
| Bromoform                  | ND     | 5           |       |
| 4-Methyl-2-Pentanone       | ND     | 25          |       |
| 2-Hexanone                 | ND     | 5           |       |
| Tetrachloroethene          | ND     | 5           |       |
| 1,1,2,2-Tetrachloroethane  | ND     | 5           |       |
| Toluene                    | ND     | 5           |       |
| Chlorobenzene              | ND     | 5           |       |
| Ethyl Benzene              | ND     | 5           |       |
| Styrene                    | ND     | 5<br>5<br>5 |       |
| Total Xylenes              | ND     | 5           |       |
|                            |        |             |       |

ND - Not Detected

PQL - Practical Quantitation Limit

### QUALITY CONTROL REPORT

### VOLATILE ORGANICS PER EPA METHOD 8240

Page 2 of 2

Client: Burlington Environmental, Technical Services

Lab No: 31448qc1 Date: April 28

April 28, 1993 Date:

Blank No: V9981

VOLATILE SURROGATES

| 4011                                                  | TITLE DOIG          | COMITED                          |                                  |
|-------------------------------------------------------|---------------------|----------------------------------|----------------------------------|
| Surrogate                                             | Percent<br>Recovery |                                  | l Limits<br>Soil                 |
| Toluene - d8 Bromofluorobenzene 1,2-Dichloroethane d4 | 108<br>88<br>94     | 86 - 115<br>76 - 114<br>88 - 110 | 81 - 117<br>74 - 121<br>70 - 121 |

# SOUND ANALYTICAL SERVICES, INC. SHOWERS, INC.

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### **OUALITY CONTROL REPORT**

### VOLATILE ORGANICS - METHOD 8240

Client:

Burlington Environmental, Technical Services

Lab No:

31448qc2 ---

Units:

ug/L

Date:

April 28, 1993

### MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

| MSD No. 31         | 448-6                    |                                    |                        |     |                                 |                        |     | -   |
|--------------------|--------------------------|------------------------------------|------------------------|-----|---------------------------------|------------------------|-----|-----|
| Parameter          | Sample<br>Result<br>(SR) | Spiked<br>Sample<br>Result<br>(MS) | Spike<br>Added<br>(SA) | %R  | Spike<br>Dup<br>Result<br>(MSD) | Spike<br>Added<br>(SA) | %R  | RPD |
| 1,1-DCE            | ND                       | 55                                 | 50                     | 110 | 55                              | 50                     | 110 | 0.0 |
| TCE                | ND                       | 53                                 | 50                     | 106 | 52                              | 50                     | 104 | 1.9 |
| Chloro-<br>benzene | ND                       | 54                                 | 50                     | 108 | 53                              | 50                     | 106 | 1.9 |
| Toluene            | ND                       | 61                                 | 50                     | 122 | 60                              | 50                     | 120 | 1.7 |
| Benzene            | 14                       | 66                                 | 50                     | 104 | 64                              | 50                     | 100 | 3.1 |

RPD = Relative Percent Difference

=  $[(MSR - MSDR) / ((MSR + MSDR) / 2)] \times 100$ 

% R = Percent Recovery

 $= [(MS - SR) / SA] \times 100$ 

### Advisory Limits:

| 1                  | RPD | % RECOVERY |
|--------------------|-----|------------|
| 1,1-Dichloroethene | 22  | 59 - 172   |
| Trichloroethene    | 24  | 62 - 137   |
| Chlorobenzene      | 21  | 60 - 133   |
| Toluene            | 21  | 59 - 139   |
| Benzene            | 21  | 66 - 142   |
|                    |     |            |

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 1 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

31448qc3

Units:

ug/L

Date: April 28, 1993 Blank No: SBLK94-S8470

METHOD BLANK

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result                                         | PQL                                                                             | Flags |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------|-------|
| Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene | Result  ND | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | Flags |
| 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND               | 10<br>10<br>10<br>50<br>10                                                      |       |

PQL - Practical Quantitation Limit

ND - Not Detected

### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 2 of 3

Client: Burlington Environmental, Technical Services

Lab No: 31448qc3

Units: ug/L

Date: April 28, 1993 Blank No: SBLK94-S8470

METHOD BLANK

| Compound                                         | Result   | PQL  | Flags |
|--------------------------------------------------|----------|------|-------|
| 3-Nitroaniline                                   | ND       | 50   |       |
| Acenaphthene                                     | ND       | 10   |       |
| 2,4-Dinitrophenol                                | ND       | 50   |       |
| 4-Nitrophenol                                    | ND       | 50   |       |
| Dibenzofuran                                     | ND       | 10   |       |
| 2,4-Dinitrotoluene                               | ND       | 10   |       |
| 2,6-Dinitrotoluene                               | ND       | 10   |       |
| Diethylphthalate                                 | ND       | 10   |       |
| 4-Chlorophenyl phenyl ether                      |          | 10   |       |
| Fluorene                                         | ND       | 10   |       |
| 4-Nitroaniline                                   | ND       | 50   |       |
| 4,6-Dinitro-2-methylphenol                       | ND       | 50   |       |
| N-Nitrosodiphenylamine                           | ND       | 10   |       |
| 4-Bromophenyl phenyl ether                       | ND       | 10   |       |
| Hexachlorobenzene                                | ND       | 10   |       |
| Pentachlorophenol                                | ND       | 50   |       |
| Phenanthrene                                     | ND       | 10   |       |
| Anthracene                                       | ND       | 10   |       |
| Di-n-butylphthalate                              | 15       | 10   |       |
| Fluoranthene                                     | ND       | 10   |       |
| Pyrene                                           | ND       | 10   |       |
| Butyl benzyl phthalate                           | ND       | 10   |       |
| 3,3'-Dichlorobenzidine                           | ND       | 20   |       |
|                                                  | ND       | 10   |       |
| Benzo(a)anthracene<br>bis(2-ethylhexyl)phthalate | ND       | 10   |       |
|                                                  | ND<br>ND | 10   |       |
| Chrysene                                         | ND<br>ND | 10   |       |
| Di-n-octyl phthalate                             |          | 10   | 111   |
| Benzo(b) fluoranthene                            | · ND     | 10   |       |
| Benzo(k)fluoranthene                             | ND       | 1000 |       |
| Benzo(a)pyrene                                   | ND       | 10   |       |
| Indeno(1,2,3-cd)pyrene                           | ND       | 10   |       |
| Dibenz(a,h)anthracene                            | ND       | 10   |       |
| Benzo(g,h,i)perylene                             | ND       | 10   |       |

PQL - Practical Quantitation Limit

ND - Not Detected

### **OUALITY CONTROL REPORT**

### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 3 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

31448qc3

April 28, 1993 Date: Blank No: SBLK94-S8470

SEMINOLATILE SUPPOGATES

| SEMIVOLATILE SURROGATES                                                                              |                                  |                                                                     |                                                                      |  |  |  |
|------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| Surrogate                                                                                            | Percent<br>Recovery              | Limits<br>Soil                                                      |                                                                      |  |  |  |
| Nitrobenzene - d5<br>2-Fluorobiphenyl<br>p-Terphenyl-d14<br>Phenol-d6<br>2-Fluorophenol<br>2,4,6-TBP | 76<br>64<br>98<br>26<br>51<br>66 | 35 - 114<br>43 - 116<br>33 - 141<br>10 - 94<br>21 - 100<br>10 - 123 | 23 - 120<br>30 - 115<br>18 - 137<br>24 - 113<br>25 - 121<br>19 - 122 |  |  |  |

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### WATER MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name:

Burlington Environmental, Technical Services

Lab No:

31448qc4

Date:

April 28, 1993

| SEMI-VOLATILE ORGANICS    |              |                  |            |          |             |          |      |       |
|---------------------------|--------------|------------------|------------|----------|-------------|----------|------|-------|
| COMPOUND                  | SPIKE (ug/L) | SAMPLE<br>RESULT | CONC<br>MS | %<br>REC | CONC<br>MSD | %<br>REC | RPD  | FLAGS |
| Phenol                    | 100          | ND               | 20         | 20       | 21          | 21       | 4.9  |       |
| 2-Chlorophenol            | 100          | ND               | 59         | 59       | 60          | 60       | 0.17 |       |
| 1,4-Dichlorobenzene       | 100          | ND               | 57         | 57       | 57          | 57       | 0.0  |       |
| N-nitrosodi-n-Propylamine | 100          | ND               | 78         | 78       | 78          | 78       | 0.0  | E -   |
| 1,2,4-Trichlorobenzene    | 100          | ND               | 58         | 58       | 61          | 61       | 5.0  |       |
| 4-Chloro-3-Methylphenol   | 100          | ND               | 58         | 58       | 59          | 59       | 7.1  |       |
| Acenaphthene              | 100          | 7.3              | 78         | 71       | 77          | 70       | 1.3  |       |
| 4-Nitrophenol             | 100          | ND               | 17         | 17       | 17          | 17       | 0.0  |       |
| 2,4 Dinitrotoluene        | 100          | ND               | 69         | 69       | 67          | 67       | 2.9  |       |
| Pentachlorophenol         | 100          | ND               | 71         | 71       | 64          | 64       | 10.0 |       |
| Pyrene                    | 100          | ND               | 78         | 78       | 77          | 77       | 1.3  |       |

RPD = Relative Percent Difference

<sup>%</sup> REC = Percent Recovery

| ADVISORY LIMITS:                               | RPD        | <pre>% RECOVERY</pre> |
|------------------------------------------------|------------|-----------------------|
| Phenol                                         | 4 2<br>4 0 | 12 - 89<br>27 - 123   |
| 2-Chlorophenol 1,4-Dichlorobenzene             | 28         | 36 - 97               |
| N-nitrosodi-n-<br>Propylamine                  | 38         | 41 - 116              |
| 1,2,4-Trichlorobenzene 4-Chloro-3-Methylphenol | 28<br>42   | 39 - 98<br>23 - 97    |
| Acenaphthene<br>4-Nitrophenol                  | 31<br>50   | 46 - 118<br>10 - 80   |
| 2,4 Dinitrotoluene                             | 38         | 24 - 96               |
| Pentachlorophenol<br>Pyrene                    | 50<br>31   | 9 - 103<br>26 - 127   |

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### QUALITY CONTROL REPORT

TPH by Method 418.1

Client:

Burlington Environmental, Technical Services

Lab No:

31448qc5

Matrix:

Water

Units:

mg/L

Date:

April 28, 1993

METHOD BLANK

|                                 | TILLINOD DELINITY |     |
|---------------------------------|-------------------|-----|
| Parameter                       | Result            | PQL |
| Total Petroleum<br>Hydrocarbons | ND                | 1.0 |

ND - Not Detected

PQL - Practical Quantitation Limit

DIAME CDIEF DECOVEDY

| 11 |                                    |                                  | DL                     | WMV 25IV | E KECUV                                  | ERI                    |    |     |      |
|----|------------------------------------|----------------------------------|------------------------|----------|------------------------------------------|------------------------|----|-----|------|
|    | Parameter                          | Blank<br>Spike<br>Result<br>(BS) | Spike<br>Added<br>(SA) | %R       | Blank<br>Spike<br>Dup<br>Result<br>(BSD) | Spike<br>Added<br>(SA) | %R | RPD | Flag |
|    | Total<br>Petroleum<br>Hydrocarbons | 8.7                              | 10                     | 87       | 8.7                                      | 10                     | 87 | 0.0 |      |

= Percent Recovery  $= [(BS / SA] \times 100$ 

RPD = Relative Percent Difference

 $= [(BS - BSD) / ((BS + BSD) / 2] \times 100$ 

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 1 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31448qc6

Matrix:

Water

Units:

mg/L

Date:

April 28, 1993

### MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

| MS / MSD No. 31448-6                 |                          |                                    |                        |     |                                 |     |
|--------------------------------------|--------------------------|------------------------------------|------------------------|-----|---------------------------------|-----|
| Parameter                            | Sample<br>Result<br>(SR) | Spiked<br>Sample<br>Result<br>(MS) | Spike<br>Added<br>(SA) | %R  | Spike<br>Dup<br>Result<br>(MSD) | RPD |
| Total Petroleum<br>Fuel Hydrocarbons | 1.6                      | 43                                 | 40.2                   | 103 | 43                              | 0.0 |

### $= [(MS - MSD) / ((MS + MSD) / 2)] \times 100$

#### BLANK SPIKE RECOVERY

BS No. 029R0101.D

Parameter Spike Added Recovered %R

Total Petroleum
Fuel Hydrocarbons 402 408 101.5

%R = Percent Recovery
= [(BS - SR) / SA] x 100

# SOUND ANALYTICAL SERVICES, INC. SERV

### QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 1 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31448qc6

Matrix: Units:

Water mg/L

Date:

April 28, 1993

#### METHOD BLANK

| Blank No. 028R0101.D                           |           |      |
|------------------------------------------------|-----------|------|
| Parameter                                      | Result    | PQL  |
| Total Petroleum<br>Fuel Hydrocarbons           | ND        | 0.75 |
| SURROGATE RECOVERY% 1-chlorooctane o-terphenyl | 75<br>110 |      |

ND - Not Detected PQL - Practical Quantitation Limit

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### WTPH-HCID

Client:

Burlington Environmental, Technical Services

Lab No:

31448qc7

Units:

mg/kg

Date:

April 28, 1993

#### METHOD BLANK

Blank No. 003F0101.D

| Blank No. 003f0101.D                             |          |       |
|--------------------------------------------------|----------|-------|
| Parameter                                        | Result   | Flags |
| Gasoline (C <sub>7</sub> -C <sub>12</sub> )      | < 20     |       |
| Diesel<br>(>C <sub>12</sub> -C <sub>24</sub> )   | < 50     |       |
| Heavy Petroleum Oil                              | < 100    |       |
| SURROGATE RECOVERY, % 1-chlorooctane o-terphenyl | 95<br>92 |       |

# SOUND ANALYTICAL SERVICES, INC. SERVICES, IN

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

### Specific Gravity

Client:

Burlington Environmental, Technical Services

Lab No: 31448qc8

Matrix: Units:

Oil mg/kg

Date:

April 28, 1993

### DUPLICATE

Dup. No. 31448-8

| Parameter        | Sample (S) | Duplicate (D) | RPD |
|------------------|------------|---------------|-----|
| Specific Gravity | 0.8745     | 0.8735        | 0.1 |

RPD = Relative Percent Difference

 $= [(S - D) / ((S + D) / 2] \times 100$ 

### METHOD BLANK

| PETHOD           | DILLIAM |
|------------------|---------|
| Parameter        | Result  |
| Specific Gravity | 1.0016  |

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### DATA QUALIFIER FLAGS

Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation ND: limit, corrected for sample dilution. J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. C: The identification of this analyte was confirmed by GC/MS. This analyte was also detected in the associated method blank. The reported sample results have been adjusted for moisture, B1: final exract volume, and/or dilutions performed during extract preparation. The analyte concentration was evaluated prior to sample preparation adjustments, and was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank). B2: This analyte was also detected in the associated method blank. However, the analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). The concentration of this analyte exceeded the instrument calibration range. E: The reported result for this analyte is calculated based on a secondary dilution factor. D: This TIC is a suspected aldol-condensation product. A: Quantitation Limits are elevated due to matrix interferences. M: The calibration quality control criteria for this compound were not met. The reported concentration should be considered an S: estimated quantity. Contaminant does not appear to be "typical" product. Elution pattern suggests it may be X1: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. X2: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended. X3: X4: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous. X4a: RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit. X5: Matrix spike was diluted out during analysis. X6: Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results. Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data. X7: RPD value for MS/MSD outside QC limits due to high contaminant levels. X7a: X8: Surrogate was diluted out during analysis. X9: Surrogate recovery outside QC limits due to matrix composition.

Surrogate recovery outside QC limits due to high contaminant levels.

X10:



210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173 618/281-5120 FAX

### CHAIN-OF-CUSTODY RECORD

c.o.c. serial no. 6287

| PROJECT PROJECT |              | COLY 8 | { <br>27.8 | /    | MAJOR TAS | SK 730  | 6        |                      | ANAEOR | 18/  | /0/ | /0/   | 7     | //    | /9/            | 7                                      |           | PRESER-<br>ATIVES |        |           |          |         |
|-----------------|--------------|--------|------------|------|-----------|---------|----------|----------------------|--------|------|-----|-------|-------|-------|----------------|----------------------------------------|-----------|-------------------|--------|-----------|----------|---------|
| SAMPLER         |              | 4Ros   | V          |      |           | 150     | <u> </u> | ERS                  | 23     |      | 7/a |       | الرقل | nX:   | Pi             | $\mathfrak{D}^{\prime}$                | /         | /                 | ,      | REMAR     | RKS      |         |
| LAB DEST        | INATION 4    | SOUND  | AN         | 14/4 | HUAL      | Serv    | 110      | A N                  | A      | / Cb | / a | y v   | 300   | (A)   | 1. A. S.       | γ ,                                    | Š         |                   | (CHEMI | CAL ANAL  | YSIS REC | UEST    |
| SAMPLE<br>NO.   | DATE         | TIME   | Como       | SpAB | SAMPLE    | LOCATIO | N        | NO. OF<br>CONTAINERS | 15     | 3/0  | 3/2 | 1/5   |       | 25/10 | bX.            | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Chemics 1 |                   | FORM   | NUMBER IF | APPLIC   | ABLE)   |
|                 | 4.14.93      | 0930   |            | V    | CP-W      | 0-64    | 93       | 5                    | 2      |      |     | I     |       |       |                | V                                      | V         |                   |        |           |          |         |
|                 | 4.14.93      | 1030   |            | V    | CP-109    |         |          | 5                    | 2      |      | i   | L     |       |       |                | V                                      | V         |                   |        |           |          |         |
|                 | 4.14.93      | -      |            | 0    | CP-109    | 1-049   | 13       | 6                    | 7      | 1    | L   | 1     | 1     |       |                | V                                      | J         |                   |        |           |          |         |
| -               | 4-14-93      | 1300   | -          | V    | CP-116    | M-04    | 93       | 5                    | 2      | 1    |     | 1     |       |       |                | V                                      | V         |                   |        | ****      |          |         |
|                 | 4.14.93      | 1415   |            | V    | CP-116    | -3-04   | 93       | 5                    | Z      |      | 1   | 1     |       |       |                | V                                      | V         |                   |        |           |          |         |
| 1               | 4.14.93      | 1730   | -          | V    | CP-39     | -3-04   | 43       | 16                   | 2      | 1    | 1   | 1     | 1     | 10    | -              | V                                      |           |                   |        |           |          |         |
|                 | <del> </del> |        |            |      |           |         |          | -                    | -      |      | -   | -     |       |       | -              | -                                      |           | -                 |        |           |          |         |
|                 |              |        |            |      |           |         |          |                      |        |      | -   | -     |       |       | -              | -                                      |           | <del> </del>      |        |           |          |         |
|                 |              |        |            |      |           |         |          |                      |        |      |     |       |       |       | _              | -                                      |           |                   |        |           |          |         |
|                 |              |        |            |      |           |         |          |                      |        |      |     |       |       |       |                |                                        |           |                   |        |           |          |         |
| V. 2"           |              |        |            |      |           |         |          |                      |        |      |     |       |       |       |                |                                        |           |                   |        |           |          |         |
|                 |              |        |            |      |           |         |          |                      |        |      |     |       |       |       |                |                                        |           |                   |        |           |          |         |
|                 |              |        |            |      |           |         |          |                      |        |      |     |       |       |       |                |                                        |           |                   |        |           |          |         |
| RELINQUI        | SHED BY      | , _    | -          |      | ?         |         |          |                      |        |      | REC | EIVE  | BY)   |       |                |                                        |           |                   |        |           |          |         |
|                 | 1            | SIG    | NATUE      |      |           |         |          | DATE                 | TII    |      | PA  | A.    | 1     |       |                | SIG                                    | NATURE    |                   |        |           | DATE     | TIME    |
| 7               | 100          | 10     | 10         | -2   | 9         |         | 4        | 159                  | 08     | 100  |     | XX    | TIS   | ~     | $\overline{Z}$ |                                        |           |                   |        | 4-1       | 15       | 9:354   |
| KTYIV           | Umz          | A      |            |      |           |         | 11       | 5-92                 | 12     | 701  | PY  |       | 7     | K     |                | )                                      |           |                   |        | UN        | _        | 12:30   |
| 10 M            |              | 7      |            |      |           |         | 1111     | 2/2                  | 170    |      | 1   | /     |       |       | 5              |                                        |           |                   |        | 7/        | 3        | 12:, 10 |
|                 |              |        |            |      |           |         | _        |                      | -      |      |     |       |       |       |                |                                        |           |                   |        |           |          |         |
|                 |              |        |            |      |           |         |          |                      |        |      |     |       |       |       |                |                                        |           |                   |        |           |          |         |
| SHIPPING        | NOTES        |        |            |      |           |         |          |                      | •      |      | LAI | B NOT | ES    |       |                |                                        |           |                   |        |           |          |         |
|                 |              |        |            |      |           |         |          |                      |        |      |     |       |       |       |                |                                        |           |                   |        |           |          |         |
|                 |              |        |            |      |           |         |          |                      |        |      |     |       |       |       |                |                                        |           |                   |        |           |          |         |
|                 |              |        |            |      |           |         |          |                      |        | -    |     |       |       |       |                |                                        |           |                   |        |           |          |         |

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### TRANSMITTAL MEMORANDUM

RECEIVED

MAY 1 9 1993

Burlingten Environmental Inc. Technical Services

DATE: May 17, 1993

TO: David Bro

David Broten, Burlington Environmental Engineering

PROJECT NAME: Pier 91

PROJECT NUMBER: 624878-7306

andrew Sillel

LABORATORY NUMBER: 31428

Enclosed are one original and one copy of the Tier II data deliverables package for Laboratory Work Order Number 31428. The samples were received for analysis at Sound Analytical Services, Inc., on April 14 and 19, 1993.

If there are any questions regarding this data package, please do not hesitate to call me at (206) 922-2310.

Sincerely,

Andrew J. Riddell

Project Manager

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

May 17, 1993

TO: Burlington Environmental Engineering

PROJECT NUMBER: 624878-7306

PROJECT NAME: Pier 91

LABORATORY WORK ORDER NUMBER: 31428

The samples were taken on 4/13/93 and 4/14/93 and were received at Sound on 4/14/93. The samples were analyzed for Volatile Organics in accordance with EPA SW-846 Method 8240, Semivolatile Organics in accordance with EPA SW-846 Method 8270, Total Petroleum Hydrocarbons by EPA Method 418.1 modified for soil, and Total Petroleum Fuel Hydrocarbons by EPA Method 8015 modified. Three oil samples were qualitatively screened for total petroleum fuel hydrocarbons in accordance with WA State DOE Method WTPH-HCID. The densities of the oil samples were determined in accordance with Standard Methods for the Examination of Water and Wastewater (16th Ed.) Method 213 E.

### VOLATILE ORGANICS

Samples 31428-1 through 31428-4 were analyzed on 4/16/93 and 4/19/93. Methylene chloride was detected in the method blanks at levels above the IDL. Results reported for methylene chloride in the associated samples were flagged B to indicate this. All QC parameters were within acceptance limits.

### SEMIVOLATILE ORGANICS

Samples 31428-1 and 31428-3 were extracted on 4/16/93 and analyzed on 4/20/93. Sample 31428-2 was extracted on 4/20/93 and analyzed on 4/20/93. Di-n-butylphthalate was detected above the IDL in the method blank associated with sample 31428-2. The result reported for di-n-butylphthalate was flagged B to indicate this. All QC parameters were within acceptance limits.

### TOTAL PETROLEUM FUEL HYDROCARBONS

Samples 31428-1 through 31428-3 were extracted on 4/21/93 and analyzed on 4/22/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits.

#### TOTAL PETROLEUM HYDROCARBONS

Samples 31428-1 through 31428-3 were extracted on 4/19/93 and analyzed on 4/20/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits.

PROJECT NUMBER: 624878-7306

PROJECT NAME: Pier 91

LABORATORY WORK ORDER NUMBER: 31428

### HYDROCARBON IDENTIFICATION

Samples 31428-5 through 31428-7 were extracted on 4/16/93 and analyzed on 4/20/93. No contamination above the PQL was present in the method blank.

### SPECIFIC GRAVITY

The specific gravities for samples 31428-5 through 31428-7 were determined on 4/16/93.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental, Date: April 27, 1993

Report On: Analysis of Oil & Water

Technical Services

Lab No.: 31428

Page 1 of 23

IDENTIFICATION:

Samples received on 04-14-93 Project: 624878-7306 Pier 91

### ANALYSIS:

Lab Sample No. 31428-1 Client ID: CP-117-0493

Matrix: Water

Volatile Organics by Method 8240 Date Analyzed: 4-16-93

| Compound                   | Concentration ug/L | PQL   | Flag |
|----------------------------|--------------------|-------|------|
| Chloromethane              | ND                 | 400   |      |
| Bromomethane               | ND                 | 400   |      |
| Vinyl Chloride             | ND                 | 400   |      |
| Chloroethane               | 210                | 400   | J    |
| Methylene Chloride         | 300                | 200   | B1   |
| Acetone                    | ND                 | 2,000 |      |
| Carbon Disulfide           | ND                 | 200   |      |
| 1,1-Dichloroethene         | ND                 | 200   |      |
| 1,1-Dichloroethane         | 270                | 200   |      |
| 1,2-Dichloroethene (Total) | ND                 | 200   |      |
| Chloroform                 | ND                 | 200   |      |
| 1,2-Dichloroethane         | ND                 | 200   |      |
| 2-Butanone                 | ND                 | 1,000 |      |
| 1,1,1-Trichloroethane      | ND                 | 200   |      |
| Carbon Tetrachloride       | ND                 | 200   |      |
| Vinyl Acetate              | ND                 | 1,000 |      |
| Bromodichloromethane       | ND                 | 200   |      |
| 1,2-Dichloropropane        | ND                 | 200   | 1    |
| Cis-1,3-Dichloropropene    | ND                 | 200   |      |
| Trichloroethene            | ND                 | 200   |      |
| Dibromochloromethane       | ND                 | 200   |      |
| 1,1,2-Trichloroethane      | ND                 | 200   |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 2 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-1

Client ID: CP-117-0493

Matrix: Water

8240 Continued . . .

| Compound                                                                                                                                                                          | Concentration ug/L                  | PQL                                                                                | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------|------|
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | 28 ND ND ND ND ND 1,800 ND 4,100 ND | 200<br>200<br>200<br>1,000<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate Surrogates               | Percent    | Control              | C 200 100            |
|------------------------------------|------------|----------------------|----------------------|
| Compound                           | Recovery   | Water                | Soil                 |
| Toluene - D8<br>Bromofluorobenzene | 101<br>102 | 88 - 110<br>86 - 115 | 81 - 117<br>74 - 121 |
| 1,2-Dichloroethane-D4              |            | 76 - 114             | 70 - 121             |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 3 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-1

Client ID: CP-117-0493

Matrix: Water

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-16-93 Date Analyzed: 4-20-93

| Compound                                       | Concentration ug/L | PQL        | Flag |
|------------------------------------------------|--------------------|------------|------|
| Phenol<br>bis(2-Chloroethyl) ether             | ND<br>ND           | 220<br>220 |      |
| 2-Chlorophenol                                 | ND<br>ND           | 220<br>220 |      |
| 1,3-Dichlorobenzene 1,4-Dichlorobenzene        | ND                 | 220        |      |
| Benzyl Alcohol                                 | ND                 | 450        |      |
| 1,2-Dichlorobenzene                            | ND                 | 220        |      |
| 2-Methylphenol                                 | ND                 | 220        |      |
| bis(2-Chloroisopropyl)ether                    | ND                 | 220        | _    |
| 4-Methylphenol                                 | 190                | 220        | J    |
| N-Nitroso-Di-N-propylamine<br>Hexachloroethane | ND<br>ND           | 220<br>220 |      |
| Nitrobenzene                                   | ND<br>ND           | 220        |      |
| Isophorone                                     | ND                 | 220        |      |
| 2-Nitrophenol                                  | ND                 | 220        |      |
| 2,4-Dimethylphenol                             | ND                 | 220        |      |
| Benzoic Acid                                   | ND                 | 1100       |      |
| bis(2-Chloroethoxy)methane                     | ND                 | 220        |      |
| 2,4-Dichlorophenol                             | ND                 | 220<br>220 |      |
| 1,2,4-Trichlorobenzene                         | ND<br>57           | 220        | J    |
| Naphthalene<br>4-Chloroaniline                 | ND                 | 450        |      |
| Hexachlorobutadiene                            | ND                 | 220        | 501  |
| 4-Chloro-3-methylphenol                        | ND                 | 450        |      |
|                                                |                    |            |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 4 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-1

Matrix: Water

Client ID: CP-117-0493

EPA Method 8270 Continued

|                       |                                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Concentration<br>ug/L | PQL                                             | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45                    | 220                                             | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 1100                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 1100                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 1100                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 1100                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 1100                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 1100                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 1100                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                    | 220                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | ug/L  45 ND | ug/L     PQL       45     220       ND     220       ND     220       ND     220       ND     1100       ND     220       ND     220       ND     1100       ND     1100       ND     1100       ND     1100       ND     220       ND     220       ND     220       ND     220       ND     1100       ND     1100       ND     220       ND     1100       ND     220       ND     220       ND     220       ND     220       ND     220       ND     1100       ND     220       ND     1100       ND     220       ND     220 |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 5 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-1 Client ID: CP-117-0493

Matrix: Water

EPA Method 8270 Continued

| Compound         Concentration ug/L         PQL         Flag           Fluoranthene         ND         220         220           Pyrene         ND         220         220           Butyl benzyl phthalate         ND         220         3,3'-Dichlorobenzidine         ND         450           Benzo(a)anthracene         ND         220         220         220         220           Chrysene         ND         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220         220 | LIN NECTION OF O CONSTITUTE                                                                                                                                                                                                            | A                                        |                                                                                  |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|------|
| Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene  ND D220 D220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Compound                                                                                                                                                                                                                               |                                          | PQL                                                                              | Flag |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene | ND N | 220<br>220<br>450<br>220<br>220<br>220<br>220<br>220<br>220<br>220<br>220<br>220 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate                                                                                                                            | Percent                    | Control                                                             | Limits                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| Compound                                                                                                                             | Recovery                   | Water                                                               | Soil                                                                 |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | X8<br>X8<br>X8<br>X8<br>X8 | 35 - 114<br>43 - 116<br>33 - 141<br>10 - 94<br>21 - 100<br>10 - 123 | 23 - 120<br>30 - 115<br>18 - 137<br>24 - 113<br>25 - 121<br>19 - 122 |

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91

Page 6 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-1

Client ID: CP-117-0493

Matrix: Water

TPH Per EPA Method 418.1 Date Extracted: 4-19-93 Date Analyzed: 4-20-93

PQL Flaq Concentration, mq/L Parameter

Total Petroleum

36 1.0 Hydrocarbons

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-21-93 Date Analyzed: 4-22-93

Parameter Concentration, mq/L PQL Flaq

Total Petroleum

0.75 74 X2 Fuel Hydrocarbons

TPH as Gasoline, Diesel

SURROGATE RECOVERY, %

1-chlorooctane 108 112 o-terphenyl

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 7 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-2

Client ID: CP-118-0493

Matrix: Water

Volatile Organics by Method 8240 Date Analyzed: 4-19-93

| Compound                   | Concentration ug/L | PQL | Flag |
|----------------------------|--------------------|-----|------|
| Chloromethane              | ND                 | 20  |      |
| Bromomethane               | ND                 | 20  |      |
| Vinyl Chloride             | ND                 | 20  |      |
| Chloroethane               | 9.4                | 20  | J    |
| Methylene Chloride         | 19                 | 10  | B1   |
| Acetone                    | 4.0                | 100 | J    |
| Carbon Disulfide           | ND                 | 10  |      |
| 1,1-Dichloroethene         | ND                 | 10  |      |
| 1,1-Dichloroethane         | 8.6                | 10  | J    |
| 1,2-Dichloroethene (Total) | ND                 | 10  |      |
| Chloroform                 | ND                 | 10  |      |
| 1,2-Dichloroethane         | ND                 | 10  |      |
| 2-Butanone                 | ND                 | 50  |      |
| 1,1,1-Trichloroethane      | ND                 | 10  |      |
| Carbon Tetrachloride       | ND                 | 10  |      |
| Vinyl Acetate              | ND                 | 50  |      |
| Bromodichloromethane       | ND                 | 10  |      |
| 1,2-Dichloropropane        | ND                 | 10  |      |
| Cis-1,3-Dichloropropene    | ND                 | 10  |      |
| Trichloroethene            | ND                 | 10  |      |
| Dibromochloromethane       | ND                 | 10  |      |
| 1,1,2-Trichloroethane      | ND                 | 10  |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 8 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-2

Client ID: CP-118-0493

Matrix: Water

8240 Continued . .

| 8240 Continued                                                                                                                                                                    |                                           |                                                          |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|------|
| Compound                                                                                                                                                                          | Concentration ug/L                        | PQL                                                      | Flag |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | 18 ND | 10<br>10<br>10<br>50<br>10<br>10<br>10<br>10<br>10<br>10 | J    |
|                                                                                                                                                                                   |                                           |                                                          |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 99       | 88 - 110 | 81 - 117 |
|                                                       | 89       | 86 - 115 | 74 - 121 |
|                                                       | 107      | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 9 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-2

Client ID: CP-118-0493

Matrix: Water

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-20-93 Date Analyzed: 4-20-93

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| Phenol                      | ND                 | 18  |      |
| bis(2-Chloroethyl) ether    | ND                 | 18  |      |
| 2-Chlorophenol              | ND                 | 18  |      |
| 1,3-Dichlorobenzene         | ND                 | 18  |      |
| 1,4-Dichlorobenzene         | ND                 | 18  |      |
| Benzyl Alcohol              | ND                 | 36  |      |
| 1,2-Dichlorobenzene         | ND                 | 18  |      |
| 2-Methylphenol              | ND                 | 18  |      |
| bis(2-Chloroisopropyl)ether | ND                 | 18  |      |
| 4-Methylphenol              | ND                 | 18  |      |
| N-Nitroso-Di-N-propylamine  | ND                 | 18  |      |
| Hexachloroethane            | ND                 | 18  |      |
| Nitrobenzene                | ND                 | 18  |      |
| Isophorone                  | ND                 | 18  |      |
| 2-Nitrophenol               | ND                 | 18  |      |
| 2,4-Dimethylphenol          | ND                 | 18  |      |
| Benzoic Acid                | ND                 | 91  |      |
| bis(2-Chloroethoxy)methane  | ND                 | 18  |      |
| 2,4-Dichlorophenol          | ND                 | 18  |      |
| 1,2,4-Trichlorobenzene      | ND                 | 18  |      |
| Naphthalene                 | 18                 | 18  | J    |
| 4-Chloroaniline             | ND                 | 36  |      |
| Hexachlorobutadiene         | ND                 | 18  |      |
| 4-Chloro-3-methylphenol     | 76                 | 36  |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 10 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-2

Client ID: CP-118-0493

Matrix: Water

EPA Method 8270 Continued

| Flag  |
|-------|
|       |
|       |
| i     |
| 1     |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
| J     |
|       |
|       |
| J     |
|       |
|       |
|       |
| J     |
|       |
|       |
|       |
|       |
|       |
| _     |
| J     |
|       |
| B1, J |
|       |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 11 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-2

Client ID: CP-118-0493

Matrix: Water

EPA Method 8270 Continued

| Compound                                                                                                                                                                                                                                                                 | Concentration ug/L                       | PQL                                                            | Flag |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|------|
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | ND N | 18<br>18<br>18<br>36<br>18<br>18<br>18<br>18<br>18<br>18<br>18 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate                                                                                                                            | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| Compound                                                                                                                             | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 69       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 91       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 91       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 22       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 45       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 97       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 12 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-2

Client ID: CP-118-0493

Matrix: Water

TPH Per EPA Method 418.1 Date Extracted: 4-19-93 Date Analyzed: 4-20-93

<u>Parameter</u> <u>Concentration, mg/L</u> <u>PQL</u> <u>Flag</u>

Total Petroleum Hydrocarbons

34 1.0

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-21-93 Date Analyzed: 4-22-93

Parameter Concentration, mg/L PQL Flag

Total Petroleum
Fuel Hydrocarbons 26 0.75 X2

TPH as Gasoline, Diesel

SURROGATE RECOVERY, %

1-chlorooctane 109 o-terphenyl 133

ND - Not Detected POL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 13 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-3

Client ID: CP-119-0493

Matrix: Water

Volatile Organics by Method 8240 Date Analyzed: 4-19-93

| Compound                      | Concentration ug/L | PQL      | Flag  |
|-------------------------------|--------------------|----------|-------|
| Chloromethane<br>Bromomethane | ND<br>ND           | 10<br>10 |       |
| Vinyl Chloride                | ND                 | 10       |       |
| Chloroethane                  | 140                | 10       |       |
| Methylene Chloride            | 2.5                | 5        | B1, J |
| Acetone                       | 13                 | 50       | J     |
| Carbon Disulfide              | ND                 | 5        |       |
| 1,1-Dichloroethene            | ND                 | 5        |       |
| 1,1-Dichloroethane            | 33                 | 5        | 1     |
| 1,2-Dichloroethene (Total)    | ND                 | 5        |       |
| Chloroform                    | ND                 | 5        |       |
| 1,2-Dichloroethane            | ND                 | 5        |       |
| 2-Butanone                    | ND                 | 25       |       |
| 1,1,1-Trichloroethane         | ND                 | 5        |       |
| Carbon Tetrachloride          | ND                 | 5        |       |
| Vinyl Acetate                 | ND                 | 25       |       |
| Bromodichloromethane          | ND                 | 5        |       |
| 1,2-Dichloropropane           | ND                 | 5        |       |
| Cis-1,3-Dichloropropene       | ND                 | 5        |       |
| Trichloroethene               | 1.9                | 5        | J     |
| Dibromochloromethane          | ND                 | 5        |       |
| 1,1,2-Trichloroethane         | ND                 | 5        |       |

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 14 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-3

Client ID: CP-119-0493

Matrix: Water

8240 Continued . . .

| Compound                                                                                                                                                                          | Concentration<br>ug/L                                    | PQL                                                                                         | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|------|
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | 45<br>ND<br>ND<br>ND<br>ND<br>ND<br>35<br>ND<br>26<br>ND | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| TOTAL DELLO GENERAL                                   |          |          |          |
|-------------------------------------------------------|----------|----------|----------|
| Surrogate                                             | Percent  | Control  | Limits   |
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 99       | 88 - 110 | 81 - 117 |
|                                                       | 97       | 86 - 115 | 74 - 121 |
|                                                       | 99       | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 15 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-3

Client ID: CP-119-0493

Matrix: Water

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-16-93 Date Analyzed: 4-20-93

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
|                             |                    |     |      |
| Phenol                      | ND                 | 100 |      |
| bis(2-Chloroethyl) ether    | ND                 | 100 |      |
| 2-Chlorophenol              | ND                 | 100 |      |
| 1,3-Dichlorobenzene         | ND                 | 100 |      |
| 1,4-Dichlorobenzene         | ND                 | 100 |      |
| Benzyl Alcohol              | ND                 | 210 |      |
| 1,2-Dichlorobenzene         | ND                 | 100 |      |
| 2-Methylphenol              | ND                 | 100 |      |
| bis(2-Chloroisopropyl)ether | ND                 | 100 |      |
| 4-Methylphenol              | ND                 | 100 |      |
| N-Nitroso-Di-N-propylamine  | ND                 | 100 |      |
| Hexachloroethane            | ND                 | 100 |      |
| Nitrobenzene                | ND                 | 100 |      |
| Isophorone                  | ND                 | 100 |      |
| 2-Nitrophenol               | ND                 | 100 |      |
| 2,4-Dimethylphenol          | ND                 | 100 |      |
| Benzoic Acid                | ND                 | 520 |      |
| bis(2-Chloroethoxy)methane  | ND                 | 100 |      |
| 2,4-Dichlorophenol          | ND                 | 100 |      |
| 1,2,4-Trichlorobenzene      | ND                 | 100 |      |
| Naphthalene                 | 120                | 100 |      |
| 4-Chloroaniline             | ND                 | 210 |      |
| Hexachlorobutadiene         | ND                 | 100 |      |
| 4-Chloro-3-methylphenol     | ND                 | 210 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 16 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-3

Client ID: CP-119-0493

Matrix: Water

EPA Method 8270 Continued

| Compound                    | Concentration<br>ug/L | PQL | Flag |
|-----------------------------|-----------------------|-----|------|
| 2-Methylnaphthalene         | 260                   | 100 |      |
| Hexachlorocyclopentadiene   | ND                    | 100 |      |
| 2,4,6-Trichlorophenol       | ND                    | 100 |      |
| 2,4,5-Trichlorophenol       | ND                    | 100 |      |
| 2-Chloronaphthalene         | ND                    | 100 |      |
| 2-Nitroaniline              | ND                    | 520 |      |
| Dimethyl phthalate          | ND                    | 100 |      |
| Acenaphthylene              | ND                    | 100 |      |
| 2,6-Dinitrotoluene          | ND                    | 100 |      |
| 3-Nitroaniline              | ND                    | 520 |      |
| Acenaphthene                | ND                    | 100 |      |
| 2,4-Dinitrophenol           | ND                    | 520 |      |
| 4-Nitrophenol               | ND                    | 520 |      |
| Dibenzofuran                | ND                    | 100 |      |
| 2,4-Dinitrotoluene          | ND                    | 100 |      |
| Diethylphthalate            | ND                    | 100 |      |
| 4-Chlorophenyl phenyl ether | ND                    | 100 |      |
| Fluorene                    | 22                    | 100 | J    |
| 4-Nitroaniline              | ND                    | 520 |      |
| 4,6-Dinitro-2-methylphenol  | ND                    | 520 |      |
| N-Nitrosodiphenylamine      | ND                    | 100 |      |
| 4-Bromophenyl phenyl ether  | ND                    | 100 |      |
| Hexachlorobenzene           | ND                    | 100 |      |
| Pentachlorophenol           | ND                    | 520 |      |
| Phenanthrene                | 33                    | 100 | J    |
| Anthracene                  | ND                    | 100 |      |
| Di-n-butylphthalate         | ND                    | 100 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 17 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-3

Client ID: CP-119-0493

Matrix: Water

EPA Method 8270 Continued

| Compound                                                                                                                                                                                                                                                                 | Concentration ug/L                       | PQL                                                                | Flag |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|------|
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | ND N | 100<br>100<br>100<br>210<br>100<br>100<br>100<br>100<br>100<br>100 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate                                                                                                                            | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| Compound                                                                                                                             | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 68       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 115      | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 104      | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 25       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 56       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 92       | 10 - 123 | 19 - 122 |

Continued . . . .

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 18 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-3

Client ID: CP-119-0493

Matrix: Water

TPH Per EPA Method 418.1 Date Extracted: 4-19-93 Date Analyzed: 4-20-93

Parameter Concentration, mg/L POL Flag

Total Petroleum

Hydrocarbons 190 10

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-21-93 Date Analyzed: 4-22-93

<u>Parameter</u> <u>Concentration, mg/L</u> <u>PQL</u> <u>Flag</u>

Total Petroleum
Fuel Hydrocarbons 100 0.75 X2

TPH as Gasoline, Diesel

SURROGATE RECOVERY, %

1-chlorooctane 116 o-terphenyl 130

ND - Not Detected PQL - Practical Quantitation Limit

Continued . . . .

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 19 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-4

Client ID: Trip Blank #7

Matrix: Water

Volatile Organics by Method 8240 Date Analyzed: 4-16-93

| Compound                   | Concentration ug/L | PQL | Flag |
|----------------------------|--------------------|-----|------|
| Chloromethane              | ND                 | 10  |      |
| Bromomethane               | ND                 | 10  |      |
| Vinyl Chloride             | ND                 | 10  |      |
| Chloroethane               | ND                 | 10  | D.1  |
| Methylene Chloride         | 6.5                | 5   | B1   |
| Acetone                    | ND                 | 50  |      |
| Carbon Disulfide           | ND                 | 5   |      |
| 1,1-Dichloroethene         | ND                 | 5   |      |
| 1,1-Dichloroethane         | ND                 | 5   |      |
| 1,2-Dichloroethene (Total) | ND                 | 5   |      |
| Chloroform                 | ND                 | 5   |      |
| 1,2-Dichloroethane         | ND                 | 5   |      |
| 2-Butanone                 | ND                 | 25  |      |
| 1,1,1-Trichloroethane      | ND                 | 5   |      |
| Carbon Tetrachloride       | ND                 | 5   |      |
| Vinyl Acetate              | ND                 | 25  |      |
| Bromodichloromethane       | ND                 | 5   |      |
| 1,2-Dichloropropane        | ND                 | 5   |      |
| Cis-1,3-Dichloropropene    | ND                 | 5   |      |
| Trichloroethene            | ND                 | 5   |      |
| Dibromochloromethane       | ND                 | 5   |      |
| 1,1,2-Trichloroethane      | ND                 | 5   |      |

ND - Not Detected PQL - Practical Quantitation Limit

Continued . . .

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 20 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-4

Client ID: Trip Blank #7

Matrix: Water

8240 Continued . . .

| or to conternaca                                                                                                                                                                  | 4                                        |                                                                    |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|------|
| Compound                                                                                                                                                                          | Concentration ug/L                       | PQL                                                                | Flag |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND N | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |      |
| TOTAL MYTCHES                                                                                                                                                                     | 112                                      |                                                                    |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 107      | 88 - 110 | 81 - 117 |
|                                                       | 87       | 86 - 115 | 74 - 121 |
|                                                       | 103      | 76 - 114 | 70 - 121 |

Continued . . .

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

RECEIVED

AUG 4 1993

Burlington Environmental Inc. Tecnnical Services Andrew Riddell Project Manager Sound Analytical Services, Inc. 4813 Pacific Hwy East Tacoma, Washington 98424

August 3, 1993

James Peale
Burlington Environmental
Technical Services
P.O. Box 3552
Seattle, Washington 98124

Dear Mr. Peale:

Please find enclosed page 21 of 23 from our lab report #31428 dated April 27, 1993. This page has been revised to more accurately reflect the sample matrix and to clarify the reported specific gravity result.

If there are any further questions, please do not hesitate to call me at (206) 922-2310.

Sincerely,

Andrew J. Riddell

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 21 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-5

Client ID: CP-117-0493

Matrix: Water/Oil

o-terphenyl

WTPH-HCID

Date Extracted: 4-16-93 Date Analyzed: 4-20-93

| <u>Parameters</u>       | Concentration, mg/kg | Flag |
|-------------------------|----------------------|------|
| Gasoline<br>(C7-C12)    | < 20                 |      |
| Diesel<br>(> C12 - C24) | > 50                 |      |
| Heavy Oil (C24+)        | < 100                |      |
| SURROGATE RECOVERY, %   |                      |      |
| 1-chlorooctane          | 107                  |      |

ND - Not Detected PQL - Practical Quantitation Limit

| <u>Parameter</u>  | Result |
|-------------------|--------|
| Specific Gravity* | 1.0055 |

<sup>\*</sup> Due to an insufficient quantity of free oil product, specific gravity determination was performed on the aqueous portion of this sample.

93

Continued . . . .

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 21 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-5

Client ID: CP-117-0493

Matrix: Oil

WTPH-HCID

Date Extracted: 4-16-93 Date Analyzed: 4-20-93

| Parameters                    | Concentration, mg/kg | Flag |
|-------------------------------|----------------------|------|
| Gasoline<br>(C7-C12)          | < 20                 |      |
| Diesel<br>(> C12 - C24)       | > 50                 |      |
| Heavy Oil (C24+)              | < 100                |      |
| SURROGATE RECOVERY, %         |                      |      |
| 1-chlorooctane<br>o-terphenyl | 107<br>93            |      |

ND - Not Detected POL - Practical Quantitation Limit

| <u>Parameter</u> | Result |
|------------------|--------|
| Specific Gravity | 1.0055 |

Continued . . .

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 22 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-6

Client ID: CP-118-0493

Matrix: Oil

o-terphenyl

WTPH-HCID

Date Extracted: 4-16-93 Date Analyzed: 4-20-93

| Parameters              | Concentration, mq/kq | Flaq |
|-------------------------|----------------------|------|
| <u>rurume cers</u>      |                      |      |
| Gasoline<br>(C7-C12)    | > 20                 |      |
|                         | 5.0                  |      |
| Diesel<br>(> C12 - C24) | > 50                 |      |
| Heavy Oil               | < 100                |      |
|                         |                      |      |
| SURROGATE RECOVERY, %   |                      |      |
| 1-chlorooctane          | 76                   |      |

360

ND - Not Detected PQL - Practical Quantitation Limit

| <u>Parameter</u> | Result |
|------------------|--------|
| Specific Gravity | 0.8849 |

Continued . . . .

X10

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 23 of 23 Lab No. 31428 April 27, 1993

Lab Sample No. 31428-7

Client ID: CP-119-0493

Matrix: Oil

WTPH-HCID

Date Extracted: 4-16-93 Date Analyzed: 4-20-93

| Parameters                    | Concentration, mg/kg | Flag |
|-------------------------------|----------------------|------|
| Gasoline<br>(C7-C12)          | > 20                 |      |
| Diesel<br>(> C12 - C24)       | > 50                 |      |
| Heavy Oil (C24+)              | > 100                |      |
| SURROGATE RECOVERY, %         |                      |      |
| 1-chlorooctane<br>o-terphenyl | 48<br>133            | Х9   |

ND - Not Detected PQL - Practical Quantitation Limit

| <u>Parameter</u> | Result |
|------------------|--------|
| Specific Gravity | 0.9080 |

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

### VOLATILE ORGANICS PER EPA METHOD 8240

### Page 1 of 2

Client: Burlington Environmental, Technical Services

Lab No:

31428qc5

Units:

ug/L

Date:

April 27, 1993

Blank No: V9909

Date Analyzed: 4-16-93

| MĘ                         | THOD BLANK |     |       |
|----------------------------|------------|-----|-------|
| Compound                   | Result     | PQL | Flags |
| Chloromethane              | ND         | 10  |       |
| Bromomethane               | ND         | 10  |       |
| Vinyl Chloride             | ND         | 10  |       |
| Chloroethane               | ND         | 10  |       |
| Methylene Chloride         | 5.3        | 5   |       |
| Acetone                    | ND         | 50  |       |
| Carbon Disulfide           | ND         | 5   |       |
| 1,1-Dichloroethene         | ND         | 5   |       |
| 1,1-Dichloroethane         | ND         | 5   |       |
| 1,2-Dichloroethene (Total) | ND         | 5   |       |
| Chloroform                 | ND         | 5   |       |
| 1,2-Dichloroethane         | ND         | 5   |       |
| 2-Butanone                 | ND         | 25  |       |
| 1,1,1-Trichloroethane      | ND         | 5   |       |
| Carbon Tetrachloride       | ND         | 5   |       |
| Vinyl Acetate              | ND         | 25  |       |
| Bromodichloromethane       | ND         | 5   |       |
| 1,2-Dichloropropane        | ND         | 5   |       |
| Cis-1,3-Dichloropropene    | ND         | 5   |       |
| Trichloroethene            | ND         | 5   |       |
| Dibromochloromethane       | ND         | 5   |       |
| 1,1,2-Trichloroethane      | ND         | 5   |       |
| Benzene                    | ND         | 5   |       |
| Trans-1,3-Dichloropropene  | ND         | 5   |       |
| Bromoform                  | ND         | 5   |       |
| 4-Methyl-2-Pentanone       | ND         | 25  |       |
| 2-Hexanone                 | ND         | 5   |       |
| Tetrachloroethene          | ND         | 5   |       |
| 1,1,2,2-Tetrachloroethane  | ND         | 5   |       |
| Toluene                    | ND         | 5   |       |
| Chlorobenzene              | ND         | 5   |       |
| Ethyl Benzene              | ND         | 5   |       |
| Styrene                    | ND         | 5   |       |
| Total Xylenes              | ND         | 5   |       |

ND - Not Detected

PQL - Practical Quantitation Limit

### QUALITY CONTROL REPORT

#### VOLATILE ORGANICS PER EPA METHOD 8240

Page 2 of 2

Client: Burlington Environmental, Technical Services
Lab No: 31428qc5

Date: April 27, 1993

Blank No: V9909

Date Analyzed: 4-16-93

VOLATILE SURROGATES

| Surrogate                                             | Percent<br>Recovery | 100 CO ROLL CO SOUTH ST | l Limits<br>Soil |
|-------------------------------------------------------|---------------------|-------------------------|------------------|
| Toluene - d8 Bromofluorobenzene 1,2-Dichloroethane d4 | 106                 | 86 - 115                | 81 - 117         |
|                                                       | 86                  | 76 - 114                | 74 - 121         |
|                                                       | 101                 | 88 - 110                | 70 - 121         |

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

### VOLATILE ORGANICS PER EPA METHOD 8240

### Page 1 of 2

Client: Burlington Environmental, Technical Services

METHOD BLANK

Lab No: 31428qc6

Units: ug/L

Date: April 27, 1993

Blank No: V9958

Date Analyzed: 4-19-93

| Compound                  | Result | PQL | Flags |
|---------------------------|--------|-----|-------|
| Chloromethane             | ND     | 10  |       |
| Bromomethane              | ND     | 10  |       |
| Vinyl Chloride            | ND     | 10  |       |
| Chloroethane              | ND     | 10  |       |
| Methylene Chloride        | 4.2    | 5   | J     |
| Acetone                   | ND     | 50  |       |
| Carbon Disulfide          | ND     | 5   |       |
| 1,1-Dichloroethene        | ND     | 5   |       |
| 1,1-Dichloroethane        | ND     | 5   |       |
| 1,2-Dichloroethene (Total | ) ND   | 5   |       |
| Chloroform                | ND     | 5   |       |
| 1,2-Dichloroethane        | ND     | 5   |       |
| 2-Butanone                | ND     | 25  |       |
| 1,1,1-Trichloroethane     | ND     | 5   |       |
| Carbon Tetrachloride      | ND     | 5   |       |
| Vinyl Acetate             | ND     | 25  |       |
| Bromodichloromethane      | ND     | 5   |       |
| 1,2-Dichloropropane       | ND     | 5   |       |
| Cis-1,3-Dichloropropene   | ND     | 5   |       |
| Trichloroethene           | ND     | 5   |       |
| Dibromochloromethane      | ND     | 5   |       |
| 1,1,2-Trichloroethane     | ND     | 5   |       |
| Benzene                   | ND     | 5   |       |
| Trans-1,3-Dichloropropene | ND     | 5   |       |
| Bromoform                 | ND     | 5   |       |
| 4-Methyl-2-Pentanone      | ND     | 25  |       |
| 2-Hexanone                | ND     | 5   |       |
| Tetrachloroethene         | ND     | 5   |       |
| 1,1,2,2-Tetrachloroethane | ND     | 5   |       |
| Toluene                   | ND     | 5   |       |
| Chlorobenzene             | ND     | 5   |       |
| Ethyl Benzene             | ND     | 5   |       |
| 1                         | 1770   | 1 - | 1     |

ND - Not Detected

Total Xylenes

Styrene

PQL - Practical Quantitation Limit

ND

ND

### **OUALITY CONTROL REPORT**

#### VOLATILE ORGANICS PER EPA METHOD 8240

Page 2 of 2

Client: Burlington Environmental, Technical Services
Lab No: 31428qc6

Date:

April 27, 1993

Blank No: V9958

Date Analyzed: 4-19-93

VOLATILE SURROGATES

| Surrogate                                             | Percent<br>Recovery | Contro   | l Limits<br>Soil |
|-------------------------------------------------------|---------------------|----------|------------------|
| Toluene - d8 Bromofluorobenzene 1,2-Dichloroethane d4 | 102                 | 86 - 115 | 81 - 117         |
|                                                       | 87                  | 76 - 114 | 74 - 121         |
|                                                       | 103                 | 88 - 110 | 70 - 121         |

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### QUALITY CONTROL REPORT

### VOLATILE ORGANICS - METHOD 8240

Client: Burlington Environmental, Technical Services

Lab No: 31428qc7

Units: ug/L Date: April

Date:

April 27, 1993

Date Analyzed: 4-16-93

| BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY |                                  |                        |     |                                          |                        |     |     |      |
|----------------------------------------------|----------------------------------|------------------------|-----|------------------------------------------|------------------------|-----|-----|------|
| Parameter                                    | Blank<br>Spike<br>Result<br>(BS) | Spike<br>Added<br>(SA) | %R  | Blank<br>Spike<br>Dup<br>Result<br>(BSD) | Spike<br>Added<br>(SA) | %R  | RPD | Flag |
| 1,1-DCE                                      | 48                               | 50                     | 96  | 49                                       | 50                     | 98  | 4.1 |      |
| TCE                                          | 47                               | 50                     | 94  | 48                                       | 50                     | 96  | 2.1 |      |
| Chloro-<br>benzene                           | 48                               | 50                     | 96  | 49                                       | 50                     | 98  | 2.1 |      |
| Toluene                                      | 50                               | 50                     | 100 | 50                                       | 50                     | 100 | 0.0 |      |
| Benzene                                      | 47                               | 50                     | 94  | 49                                       | 50                     | 98  | 4.2 |      |

%R = Percent Recovery

 $= [(BS / SA] \times 100$ 

RPD = Relative Percent Difference

 $= [(BS - BSD) / ((BS + BSD) / 2] \times 100$ 

| ADVISORY LIMITS                                                  | RPD                        | <pre>% RECOVERY</pre>                                    |
|------------------------------------------------------------------|----------------------------|----------------------------------------------------------|
| 1,1-Dichloroethene Trichloroethene Chlorobenzene Toluene Benzene | 22<br>24<br>21<br>21<br>21 | 59 - 172<br>62 - 137<br>60 - 133<br>59 - 139<br>66 - 142 |
|                                                                  |                            |                                                          |

## SOUND ANALYTICAL SERVICES, INC. STATES

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### QUALITY CONTROL REPORT

### VOLATILE ORGANICS - METHOD 8240

Client: Burlington Environmental, Technical Services
Lab No: 31428qc8
Units: ug/L

Date:

April 27, 1993

Date Analyzed: 4-19-93

|                    | BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY |                        |     |                                          |                        |     |     |      |
|--------------------|----------------------------------------------|------------------------|-----|------------------------------------------|------------------------|-----|-----|------|
| Parameter          | Blank<br>Spike<br>Result<br>(BS)             | Spike<br>Added<br>(SA) | %R  | Blank<br>Spike<br>Dup<br>Result<br>(BSD) | Spike<br>Added<br>(SA) | %R  | RPD | Flag |
| 1,1-DCE            | 52                                           | 50                     | 104 | 53                                       | 50                     | 106 | 1.9 |      |
| TCE                | 50                                           | 50                     | 100 | 55                                       | 50                     | 110 | 9.5 |      |
| Chloro-<br>benzene | 51                                           | 50                     | 102 | 54                                       | 50                     | 108 | 5.7 |      |
| Toluene            | 54                                           | 50                     | 108 | 59                                       | 50                     | 118 | 8.8 |      |
| Benzene            | 50                                           | 50                     | 100 | 54                                       | 50                     | 108 | 7.7 |      |

%R = Percent Recovery

 $= [(BS / SA] \times 100]$ 

RPD = Relative Percent Difference

 $= [(BS - BSD) / ((BS + BSD) / 2] \times 100$ 

| ADVISORY LIMITS    | RPD | <pre>% RECOVERY</pre> |
|--------------------|-----|-----------------------|
| 1,1-Dichloroethene | 22  | 59 - 172              |
| Trichloroethene    | 24  | 62 - 137              |
| Chlorobenzene      | 21  | 60 - 133              |
| Toluene            | 21  | 59 - 139              |
| Benzene            | 21  | 66 - 142              |

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 1 of 3

Client: Burlington Environmental, Technical Services

Lab No: 31428qc9

Units: ug/L

Date: April 27, 1993 Blank No: SBLK92-S8459 Date Analyzed: 4-16-93

METHOD BLANK

| Compound                    | Result | PQL | Flags |
|-----------------------------|--------|-----|-------|
| Phenol                      | ND     | 10  |       |
| bis(2-Chloroethyl) ether    | ND     | 10  |       |
| 2-Chlorophenol              | ND     | 10  |       |
| 1,3-Dichlorobenzene         | ND     | 10  |       |
| 1,4-Dichlorobenzene         | ND     | 10  |       |
| Benzyl Alcohol              | ND     | 20  |       |
| 1,2-Dichlorobenzene         | ND     | 10  |       |
| 2-Methylphenol              | ND     | 10  |       |
| bis(2-Chloroisopropyl)ether | ND     | 10  |       |
| 4-Methylphenol              | ND     | 10  |       |
| N-Nitroso-Di-N-propylamine  | ND     | 10  |       |
| Hexachloroethane            | ND     | 10  |       |
| Nitrobenzene                | ND     | 10  |       |
| Isophorone                  | ND     | 10  |       |
| 2-Nitrophenol               | ND     | 10  |       |
| 2,4-Dimethylphenol          | ND     | 10  |       |
| Benzoic Acid                | ND     | 50  |       |
| bis(2-Chloroethoxy)methane  | ND     | 10  |       |
| 2,4-Dichlorophenol          | ND     | 10  |       |
| 1,2,4-Trichlorobenzene      | ND     | 10  |       |
| Naphthalene                 | ND     | 10  |       |
| 4-Chloroaniline             | ND     | 20  |       |
| Hexachlorobutadiene         | ND     | 10  |       |
| 4-Chloro-3-methylphenol     | ND     | 20  |       |
| 2-Methylnaphthalene         | ND     | 10  |       |
| Hexachlorocyclopentadiene   | ND     | 10  |       |
| 2,4,6-Trichlorophenol       | ND     | 10  |       |
| 2,4,5-Trichlorophenol       | ND     | 10  |       |
| 2-Chloronaphthalene         | ND     | 10  |       |
| 2-Nitroaniline              | ND     | 50  |       |
| Dimethyl phthalate          | ND     | 10  |       |
| Acenaphthylene              | ND     | 10  |       |

PQL - Practical Quantitation Limit

ND - Not Detected

#### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 2 of 3

Client: Burlington Environmental, Technical Services

Lab No:

31428qc9

Units:

ug/L

Date:

April 27, 1993 Blank No: SBLK92-S8459 Date Analyzed: 4-16-93

| - METHOD BLANK |  |  |  |  |  |
|----------------|--|--|--|--|--|
| 'lags          |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |
|                |  |  |  |  |  |

PQL - Practical Quantitation Limit

ND - Not Detected

#### QUALITY CONTROL REPORT

#### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 3 of 3

Client: Burlington Environmental, Technical Services

Lab No: 31428qc9

Blank No: SBLK92-S8459

April 27, 1993

Date Analyzed: 4-16-93

SEMIVOLATILE SURROGATES

| Surrogate         | Percent  | Control  | Limits   |
|-------------------|----------|----------|----------|
|                   | Recovery | Water    | Soil     |
| Nitrobenzene - d5 | 78       | 35 - 114 | 23 - 120 |
| 2-Fluorobiphenyl  | 61       | 43 - 116 | 30 - 115 |
| p-Terphenyl-d14   | 76       | 33 - 141 | 18 - 137 |
| Phenol-d6         | 29       | 10 - 94  | 24 - 113 |
| 2-Fluorophenol    | 56       | 21 - 100 | 25 - 121 |
| 2,4,6-TBP         | 77       | 10 - 123 | 19 - 122 |

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 1 of 3

Client: Burlington Environmental, Technical Services

Lab No: 31428q10

Units: ug/L

Date: April 27, 1993 Blank No: SBLK94-S8470 Date Analyzed: 4-20-93

METHOD BLANK

| Compound                    | Result | PQL | Flags |
|-----------------------------|--------|-----|-------|
| Phenol                      | ND     | 10  | ,1 1  |
| bis(2-Chloroethyl) ether    | ND     | 10  |       |
| 2-Chlorophenol              | ND     | 10  |       |
| 1,3-Dichlorobenzene         | ND     | 10  |       |
| 1,4-Dichlorobenzene         | ND     | 10  |       |
| Benzyl Alcohol              | ND     | 20  |       |
| 1,2-Dichlorobenzene         | ND     | 10  |       |
| 2-Methylphenol              | ND     | 10  |       |
| bis(2-Chloroisopropyl)ether | ND     | 10  |       |
| 4-Methylphenol              | ND     | 10  |       |
| N-Nitroso-Di-N-propylamine  | ND     | 10  |       |
| Hexachloroethane            | ND     | 10  |       |
| Nitrobenzene                | ND     | 10  |       |
| Isophorone                  | ND     | 10  |       |
| 2-Nitrophenol               | ND     | 10  |       |
| 2,4-Dimethylphenol          | ND     | 10  |       |
| Benzoic Acid                | ND     | 50  |       |
| bis(2-Chloroethoxy)methane  | ND     | 10  |       |
| 2,4-Dichlorophenol          | ND     | 10  |       |
| 1,2,4-Trichlorobenzene      | ND     | 10  |       |
| Naphthalene                 | ND     | 10  |       |
| 4-Chloroaniline             | ND     | 20  |       |
| Hexachlorobutadiene         | ND     | 10  |       |
| 4-Chloro-3-methylphenol     | ND     | 20  |       |
| 2-Methylnaphthalene         | ND     | 10  |       |
| Hexachlorocyclopentadiene   | ND     | 10  |       |
| 2,4,6-Trichlorophenol       | ND     | 10  |       |
| 2,4,5-Trichlorophenol       | ND     | 10  |       |
| 2-Chloronaphthalene         | ND     | 10  |       |
| 2-Nitroaniline              | ND     | 50  |       |
| Dimethyl phthalate          | ND     | 10  |       |
| Acenaphthylene              | ND     | 10  |       |

PQL - Practical Quantitation Limit

ND - Not Detected

#### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 2 of 3

Client: Burlington Environmental, Technical Services

Lab No: 31428q10

Units: ug/L

Date: April 27, 1993 Blank No: SBLK94-S8470 Date Analyzed: 4-20-93

METHOD BLANK

| METHOD BLANK                |        |     |       |  |  |
|-----------------------------|--------|-----|-------|--|--|
| Compound                    | Result | PQL | Flags |  |  |
| 3-Nitroaniline              | ND     | 50  |       |  |  |
| Acenaphthene                | ND     | 10  |       |  |  |
| 2,4-Dinitrophenol           | ND     | 50  |       |  |  |
| 4-Nitrophenol               | ND     | 50  |       |  |  |
| Dibenzofuran                | ND     | 10  |       |  |  |
| 2,4-Dinitrotoluene          | ND     | 10  |       |  |  |
| 2,6-Dinitrotoluene          | ND     | 10  |       |  |  |
| Diethylphthalate            | ND     | 10  |       |  |  |
| 4-Chlorophenyl phenyl ether | ND     | 10  |       |  |  |
| Fluorene                    | ND     | 10  |       |  |  |
| 4-Nitroaniline              | ND     | 50  |       |  |  |
| 4,6-Dinitro-2-methylphenol  | ND     | 50  |       |  |  |
| N-Nitrosodiphenylamine      | ND     | 10  |       |  |  |
| 4-Bromophenyl phenyl ether  | ND     | 10  |       |  |  |
| Hexachlorobenzene           | ND     | 10  |       |  |  |
| Pentachlorophenol           | ND     | 50  |       |  |  |
| Phenanthrene                | ND     | 10  |       |  |  |
| Anthracene                  | ND     | 10  |       |  |  |
| Di-n-butylphthalate         | 15     | 10  |       |  |  |
| Fluoranthene                | ND     | 10  |       |  |  |
| Pyrene                      | ND     | 10  |       |  |  |
| Butyl benzyl phthalate      | ND     | 10  |       |  |  |
| 3,3'-Dichlorobenzidine      | ND     | 20  |       |  |  |
| Benzo(a)anthracene          | ND     | 10  |       |  |  |
| bis(2-ethylhexyl)phthalate  | ND     | 10  |       |  |  |
| Chrysene                    | ND     | 10  |       |  |  |
| Di-n-octyl phthalate        | ND     | 10  |       |  |  |
| Benzo(b)fluoranthene        | ND     | 10  |       |  |  |
| Benzo(k)fluoranthene        | ND     | 10  |       |  |  |
| Benzo(a)pyrene              | ND     | 10  |       |  |  |
| Indeno(1,2,3-cd)pyrene      | ND     | 10  |       |  |  |
| Dibenz(a,h)anthracene       | ND     | 10  |       |  |  |
| Benzo(g,h,i)perylene        | ND     | 10  |       |  |  |
|                             |        |     |       |  |  |

PQL - Practical Quantitation Limit

ND - Not Detected



### QUALITY CONTROL REPORT

### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 3 of 3

Client:

Burlington Environmental, Technical Services

Lab No: 31428q10

April 27, 1993 Blank No: SBLK94-S8470

Date Analyzed: 4-20-93

SEMIVOLATILE SURROGATES

| Surrogate         | Percent  | Control  | Limits   |
|-------------------|----------|----------|----------|
|                   | Recovery | Water    | Soil     |
| Nitrobenzene - d5 | 76       | 35 - 114 | 23 - 120 |
| 2-Fluorobiphenyl  | 64       | 43 - 116 | 30 - 115 |
| p-Terphenyl-d14   | 98       | 33 - 141 | 18 - 137 |
| Phenol-d6         | 26       | 10 - 94  | 24 - 113 |
| 2-Fluorophenol    | 51       | 21 - 100 | 25 - 121 |
| 2,4,6-TBP         | 66       | 10 - 123 | 19 - 122 |

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### WATER MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name:

Burlington Environmental, Technical Services

Lab No:

31428q11

Date:

April 27, 1993

Date Analyzed: 4-16-93

| SEMI-VOLATIĻE ORGAŅICS    |              |                  |            |          |             |          |     |       |
|---------------------------|--------------|------------------|------------|----------|-------------|----------|-----|-------|
| COMPOUND                  | SPIKE (ug/L) | SAMPLE<br>RESULT | CONC<br>MS | %<br>REC | CONC<br>MSD | %<br>REC | RPD | FLAGS |
| Phenol                    | 100          | ND               | 26         | 26       | 27          | 27       | 3.5 |       |
| 2-Chlorophenol            | 100          | ND               | 56         | 56       | 61          | 61       | 9.6 |       |
| 1,4-Dichlorobenzene       | 100          | ND               | 57         | 57       | 53          | 53       | 6.5 |       |
| N-nitrosodi-n-Propylamine | 100          | ND               | 62         | 62       | 59          | 59       | 5.6 |       |
| 1,2,4-Trichlorobenzene    | 100          | ND               | 62         | 62       | 59          | 59       | 6.0 |       |
| 4-Chloro-3-Methylphenol   | 100          | ND               | 51         | 51       | 54          | 54       | 5.7 |       |
| Acenaphthene              | 100          | ND               | 57         | 57       | 55          | 55       | 3.8 |       |
| 4-Nitrophenol             | 100          | ND               | 21         | 21       | 22          | 22       | 1.4 |       |
| 2,4 Dinitrotoluene        | 100          | ND               | 58         | 58       | 52          | 52       | 12  |       |
| Pentachlorophenol         | 100          | ND               | 57         | 57       | 62          | 62       | 8.4 |       |
| Pyrene                    | 100          | ND               | 67         | 67       | 65          | 65       | 2.9 |       |

RPD = Relative Percent Difference

#### ND - Not Detected

| ADVISORY LIMITS:        | RPD | 8 R | ECOVERY |
|-------------------------|-----|-----|---------|
| Phenol                  | 42  | 12  | - 89    |
| 2-Chlorophenol          | 40  | 27  | - 123   |
| 1,4-Dichlorobenzene     | 28  | 36  | - 97    |
| N-nitrosodi-n-          |     |     |         |
| Propylamine             | 38  | 41  | - 116   |
| 1,2,4-Trichlorobenzene  | 28  | 39  | - 98    |
| 4-Chloro-3-Methylphenol | 42  | 23  | - 97    |
| Acenaphthene            | 31  | 46  | - 118   |
| 4-Nitrophenol           | 50  | 10  | - 80    |
| 2,4 Dinitrotoluene      | 38  | 24  | - 96    |
| Pentachlorophenol       | 50  | 9   | - 103   |
| Pyrene                  | 31  | 26  | - 127   |
|                         |     |     |         |

<sup>%</sup> REC = Percent Recovery

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### WATER MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name:

Burlington Environmental, Technical Services

Lab No:

31428q12

Date:

April 27, 1993

Date Analyzed: 4-20-93

| SEMI-VOLATILE ORGANICS    |              |                  |            |          |             |          |      |       |
|---------------------------|--------------|------------------|------------|----------|-------------|----------|------|-------|
| COMPOUND                  | SPIKE (ug/L) | SAMPLE<br>RESULT | CONC<br>MS | %<br>REC | CONC<br>MSD | %<br>REC | RPD  | FLAGS |
| Phenol                    | 100          | ND               | 20         | 20       | 21          | 21       | 4.9  |       |
| 2-Chlorophenol            | 100          | ND               | 59         | 59       | 60          | 60       | 0.17 |       |
| 1,4-Dichlorobenzene       | 100          | ND               | 57         | 57       | 57          | 57       | 0.0  |       |
| N-nitrosodi-n-Propylamine | 100          | ND               | 78         | 78       | 78          | 78       | 0.0  |       |
| 1,2,4-Trichlorobenzene    | 100          | ND               | 58         | 58       | 61          | 61       | 5.0  |       |
| 4-Chloro-3-Methylphenol   | 100          | ND               | 58         | 58       | 59          | 59       | 1.7  |       |
| Acenaphthene              | 100          | 7.3              | 78         | 78       | 77          | 70       | 1.3  |       |
| 4-Nitrophenol             | 100          | ND               | 17         | 17       | 17          | 17       | 0.0  |       |
| 2,4 Dinitrotoluene        | 100          | ND               | 69         | 69       | 67          | 67       | 2.9  |       |
| Pentachlorophenol         | 100          | ND               | 71         | 71       | 64          | 64       | 10   |       |
| Pyrene                    | 100          | ND               | 78         | 78       | 77          | 77       | 1.3  |       |

RPD = Relative Percent Difference

### ND - Not Detected

| ADVISORY LIMITS:        | RPD | ₹ RECO | OVERY |
|-------------------------|-----|--------|-------|
| Phenol                  | 42  | 12 -   | 89    |
| 2-Chlorophenol          | 40  | 27 -   | 123   |
| 1,4-Dichlorobenzene     | 28  | 36 -   | 97    |
| N-nitrosodi-n-          |     |        |       |
| Propylamine             | 38  | 41 -   | 116   |
| 1,2,4-Trichlorobenzene  | 28  | 39 -   | 98    |
| 4-Chloro-3-Methylphenol | 42  | 23 -   | 97    |
| Acenaphthene            | 31  | 46 -   | 118   |
| 4-Nitrophenol           | 50  | 10 -   | 80    |
| 2,4 Dinitrotoluene      | 38  | 24 -   | 96    |
| Pentachlorophenol       | 50  | 9 –    | 103   |
| Pyrene                  | 31  | 26 -   | 127   |
|                         |     |        |       |

<sup>%</sup> REC = Percent Recovery

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### DATA QUALIFIER FLAGS

Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation ND: limit, corrected for sample dilution. The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. J: The identification of this analyte was confirmed by GC/MS. C: This analyte was also detected in the associated method blank. The reported sample results have been adjusted for moisture, B1: final exract volume, and/or dilutions performed during extract preparation. The analyte concentration was evaluated prior to sample preparation adjustments, and was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank). This analyte was also detected in the associated method blank. However, the analyte concentration in the sample was B2: determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). The concentration of this analyte exceeded the instrument calibration range. E: The reported result for this analyte is calculated based on a secondary dilution factor. D: A: This TIC is a suspected aldol-condensation product. Quantitation Limits are elevated due to matrix interferences. M: The calibration quality control criteria for this compound were not met. The reported concentration should be considered an S: estimated quantity. Contaminant does not appear to be "typical" product. Elution pattern suggests it may be X1: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. X2: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended. X3: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous. X4: RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit. X4a: X5: Matrix spike was diluted out during analysis. Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results. X6: X7: Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data. X7a: RPD value for MS/MSD outside QC limits due to high contaminant levels. X8: Surrogate was diluted out during analysis. X9: Surrogate recovery outside QC limits due to matrix composition.

Surrogate recovery outside QC limits due to high contaminant levels.

X10:

## SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### **OUALITY CONTROL REPORT**

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 1 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31428qc2

Matrix:

Water

Units:

mq/L

Date:

April 27, 1993

### MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

| MS/MSD No. 31428-1                   |                          |                                    |                        |     |                                 |     |
|--------------------------------------|--------------------------|------------------------------------|------------------------|-----|---------------------------------|-----|
| Parameter                            | Sample<br>Result<br>(SR) | Spiked<br>Sample<br>Result<br>(MS) | Spike<br>Added<br>(SA) | %R  | Spike<br>Dup<br>Result<br>(MSD) | RPD |
| Total Petroleum<br>Fuel Hydrocarbons | 74                       | 120                                | 40.2                   | 114 | 130                             | 8.0 |

#### BLANK SPIKE RECOVERY

| BS No. 029R0101.D                    |             |                    |       |
|--------------------------------------|-------------|--------------------|-------|
| Parameter                            | Spike Added | Spike<br>Recovered | %R    |
| Total Petroleum<br>Fuel Hydrocarbons | 402         | 408                | 101.5 |

### QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 2 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31428qc2

Units:

mg/L

Date:

April 27, 1993

### METHOD BLANK

| Blank No. 023R0101.D                           |           |      |
|------------------------------------------------|-----------|------|
| Parameter                                      | Result    | PQL  |
| Total Petroleum<br>Fuel Hydrocarbons           | ND        | 0.75 |
| SURROGATE RECOVERY% 1-chlorooctane o-terphenyl | 75<br>110 |      |

ND - Not Detected PQL - Practical Quantitation Limit

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### WTPH-HCID

Client: Burlington Environmental, Technical Services
Lab No: 31428qc1
Units: mg/kg
Date: April 27, 1993

April 27, 1993

#### METHOD BLANK

| Parameter                                        | Result   | Flags |
|--------------------------------------------------|----------|-------|
| Gasoline (C <sub>7</sub> -C <sub>12</sub> )      | < 20     |       |
| Diesel<br>(>C <sub>12</sub> -C <sub>24</sub> )   | < 50     | le.   |
| Heavy Petroleum Oil                              | < 100    | *     |
| SURROGATE RECOVERY, % 1-chlorooctane o-terphenyl | 95<br>92 |       |

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### QUALITY CONTROL REPORT

TPH by Method 418.1

Client:

Burlington Environmental, Technical Services

Lab No:

31428qc4

Matrix:

Water

Units:

mg/L

Date:

April 27, 1993

METHOD BLANK

| Parameter                       | Result | PQL |
|---------------------------------|--------|-----|
| Total Petroleum<br>Hydrocarbons | ND     | 1.0 |

ND - Not Detected

PQL - Practical Quantitation Limit

BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY

|                                    | DIMINI                           | DI III                 |    | 2212 202                                 |                        |    |     |      |
|------------------------------------|----------------------------------|------------------------|----|------------------------------------------|------------------------|----|-----|------|
| Parameter                          | Blank<br>Spike<br>Result<br>(BS) | Spike<br>Added<br>(SA) | %R | Blank<br>Spike<br>Dup<br>Result<br>(BSD) | Spike<br>Added<br>(SA) | %R | RPD | Flag |
| Total<br>Petroleum<br>Hydrocarbons | 8.7                              | 10                     | 87 | 8.7                                      | 10                     | 87 | 0.0 |      |

%R = Percent Recovery

 $= [(BS / SA] \times 100$ 

RPD = Relative Percent Difference

 $= [(BS - BSD) / ((BS + BSD) / 2] \times 100$ 

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSISTED A CONTROL OF A MALE WAS A CONTROL OF A CONT

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### **OUALITY CONTROL REPORT**

Specific Gravity

Client: Burlington Environmental, Technical Services

Lab No: 31428qc3

Date:

April 27, 1993

METHOD BLANK

| Parameter        | Result |
|------------------|--------|
| Specific Gravity | 1.0012 |

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### DATA QUALIFIER FLAGS

Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation ND: limit, corrected for sample dilution. The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. J: The identification of this analyte was confirmed by GC/MS. C: This analyte was also detected in the associated method blank. The reported sample results have been adjusted for moisture, B1: final exract volume, and/or dilutions performed during extract preparation. The analyte concentration was evaluated prior to sample preparation adjustments, and was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank). This analyte was also detected in the associated method blank. However, the analyte concentration in the sample was B2: determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). The concentration of this analyte exceeded the instrument calibration range. E: The reported result for this analyte is calculated based on a secondary dilution factor. D: This TIC is a suspected aldol-condensation product. A: Quantitation Limits are elevated due to matrix interferences. M: The calibration quality control criteria for this compound were not met. The reported concentration should be considered an S: estimated quantity. Contaminant does not appear to be "typical" product. Elution pattern suggests it may be X1: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. X2: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended. X3: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous. X4: RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit. X4a: Matrix spike was diluted out during analysis. X5: Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results. X6: Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data. X7: RPD value for MS/MSD outside QC limits due to high contaminant levels. X7a: X8: Surrogate was diluted out during analysis. Surrogate recovery outside QC limits due to matrix composition. X9:

Surrogate recovery outside QC limits due to high contaminant levels.

X10:

210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173 618/281-5120 FAX

### CHAIN-OF-CUSTODY RECORD

C.O.C. SERIAL NO. 6288

| 618/281-717<br>618/281-512 | 3<br>0 FAX |       |      |       |                 |                      | .,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |              |     |                                                  | ,             |           |        |         |            |         |        |      |
|----------------------------|------------|-------|------|-------|-----------------|----------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--------------|-----|--------------------------------------------------|---------------|-----------|--------|---------|------------|---------|--------|------|
| PROJEC                     |            | IER   | 91   |       |                 |                      |        | 4 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / , | / /   | / ,          | / , | / /                                              | / /           | / /       | RESER- | / .     |            |         |        |      |
| SAMPLE                     | NUMBER'    |       | 78   |       | MAJOR TASK 7306 | RS                   | 1 20   | 10 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 / 3/2 |     |       |              |     |                                                  |               | <i></i>   | /      | /       | REMARK     | C       | ĺ      |      |
|                            | TINATION   | A KO: | 517  |       |                 | AN H                 | 1~,    | £/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V   | /     | / ,          |     | / ,                                              | / ,           |           | 7      | (CHEMIC | AL ANALYS  | IS REQ  | UEST   |      |
| SAMPLE                     | DATE       | TIME  | COMO | Spage | SAMPLE LOCATION | NO. OF<br>CONTAINERS | /      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |              |     |                                                  | /3/3/<br>3/3/ | CHEMICALO |        | FORM N  | UMBER IF A | APPLIC/ | ABLE)  |      |
| NO.                        |            | 1     | 0    | -     |                 |                      | ¥.     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   |       | $\leftarrow$ | _   | _                                                | 1             |           |        |         | 1 = 1      |         | -1     | 1,1/ |
|                            | 4-13-13    | 1420  | -    | V     | CP-118-0493     |                      | 1      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | -     | -            | -   | -                                                | _             |           | Ker    | olregne | OTFOR      | - 100   | okew _ | X    |
|                            |            |       | -    |       |                 |                      | +      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | -     |              | -   | -                                                |               |           | JAM    | S Datin | xy 511     | HOM     | ENI.   | 11   |
|                            |            |       | -    | -     |                 |                      | -      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | -     |              | -   | -                                                |               |           |        |         |            |         |        | 7    |
|                            |            |       |      |       |                 |                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |              |     |                                                  |               |           |        |         |            |         |        |      |
|                            |            |       |      |       |                 |                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |              |     |                                                  |               |           |        |         |            |         |        |      |
|                            |            |       |      |       |                 |                      | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |              |     |                                                  |               |           |        |         |            |         |        | _    |
|                            |            |       |      |       |                 |                      |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | -     |              | -   | -                                                |               | -         |        |         |            |         |        | 4    |
|                            |            |       | -    |       |                 |                      | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |       | -            | -   |                                                  |               |           |        |         |            |         |        | -    |
|                            |            |       | -    | -     |                 |                      | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   | -     | -            | -   | -                                                |               |           |        |         |            |         |        | 4. 0 |
|                            | -          |       | -    | -     |                 |                      | +      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | -     | -            | -   | -                                                | -             |           |        |         |            |         |        | 1    |
|                            |            | -     | +    | -     |                 |                      | +      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | +     |              | _   | <del>                                     </del> |               |           |        |         |            |         | *      | 1 1  |
|                            | -          |       |      | -     |                 |                      | $\top$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |       |              |     |                                                  |               |           |        |         |            |         |        | 7    |
| RELINQU                    | ISHED BY   |       |      |       | ·               |                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REC | EIVE  | BY           | -   | -                                                |               | •         |        |         |            |         |        |      |
|                            | 0          | SIG   | MATU | BE    |                 | DATE                 |        | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T   | 10/   |              |     |                                                  | SIG           | NATURE    |        |         |            | DATE    | TIME   | 7    |
| 1                          | The S      | 40    | Post | a &   | 4               | 4-19-9               | 3 0    | 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | 1/2/1 | a            | ls  | 150                                              |               | 7/        |        |         | 4-1        | 9       | 10:50  | 1 A  |
| 1                          |            | ~     | 1    |       | - //            | 10.0                 |        | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P   | 70)   |              | h   |                                                  | 2/1           |           |        |         | 4/1        | 9       | 12:20  | a.   |
| 105                        | - COV      | 1     | 1    |       | 4-              | 27-2                 | 4-1    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41_ | 4     | 6            |     | 7                                                | ny            | 700       |        |         | TAI        | 1       | 12.00  | 7    |
|                            |            |       |      |       |                 |                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |              |     | <i></i>                                          | <i></i>       |           |        |         |            |         |        |      |
|                            |            |       |      |       |                 |                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |              |     |                                                  |               |           |        |         |            |         |        |      |
| SHIPPIN                    | G NOTES    |       |      |       |                 |                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LA  | B NOT | ES           |     |                                                  |               |           |        |         |            |         |        |      |
|                            |            |       |      |       |                 |                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |              |     |                                                  |               |           |        |         |            |         |        |      |
|                            |            |       |      |       |                 |                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |              |     |                                                  |               |           |        |         |            |         |        |      |

BE-34 (1/92)



210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173 618/281-5120 FAX

### **CHAIN-OF-CUSTODY RECORD**

C.O.C. SERIAL NO. 6326

| REMARKS REMARK | 618/281-7173<br>618/281-5120 FAX |        |          |            |          |            |     |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|----------|------------|----------|------------|-----|-----|------|---------------|------|------|------------|-------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|
| MPLE DATE TIME \$ \$ \$ \$ SAMPLE LOGATION \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROJECT NAME 17                  | IER 9, | /        | 9          |          |            | 4   | -/  | n    | 10/           |      | , /  |            | /                 | /       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| MPLE DATE TIME 3 8 9 SAMPLE LOCATION 28 S W FORM NUMBER IF APPLICABLE)  4/1/73 1/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROJECT NUMBER                   | 6248   | 78       | MAJOR TASK | 736      | S          | 4   | 3/  | X/   | $\frac{1}{2}$ | :/!  |      | 1./        |                   | / V     | ATIVES | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |       |
| MPLE DATE TIME \$ \$ \$ \$ SAMPLE LOGATION \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLERS L. LA                   | ROSA   | I.D.     | closed     |          | ÉR         | 23  | 1/0 | / d  |               | 70   | Y X  | /          | / ,               | / /     | s /    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| 4-1473 1/30 CP 1/7-0493 6 2 1 1 1 1 1 1 V V 4-493 1/4-93 1/4-90 V CP-119-0493 6 2 1 1 1 1 1 1 V V 1 1 1 1 V V 1 1 1 1 V V 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 1 V V 1 1 1 1 V V 1 1 1 1 V V 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1 1 V V V 1 1 1  | LAB DESTINATION S                | OUNIZ  | ANA      | 14tical S  | POLVICES | OF<br>TAIN |     | . / | 'U/  | 57            | 99   | 21/  |            |                   | 13      | · @ /  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| 4-14-73 1/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE DATE                      | TIME   | San San  | SAMPLE LO  | EATION   | NO.        | /3  | 9 M | 3/1  | 75            | \$ . | ***  | 9          | /3 <sup>3</sup> / | 15 A    | \$     | TOTAL TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JEHN AFTERN | DEE,  |
| 1000   1/20   1/2   1/3   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4  | 4-14-93                          |        |          | CP-117-    | 0493     | 6          |     | 1   |      | 1             | 1    | 1    |            |                   |         | į      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-14-93                          | 1420   | V        |            |          | 6          |     | l   | 1    | 1             | ı    | ١    |            |                   | V       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| INQUISHED BY  SIGNATURE  DATE TIME  A.14-93 0730  A.14-93 0730  A.14-93 0730  A.14-93 0730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | 1400   | ~        |            |          | 6          | Z:  | 1   | 1    | 1             | 1    | 1    |            | V                 |         |        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 1 1   |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 0 |                                  |        |          | Trip blan  | ck #7    |            | 1   |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |          | /          |          |            |     |     |      |               |      |      |            |                   | -       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |          |            |          |            |     |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |          |            |          |            |     |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |          |            |          |            |     |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 0730  DATE TIME  SIGNATURE  4-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |          | -          |          |            |     |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 0730  DATE TIME  SIGNATURE  4-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |          |            |          |            |     |     |      | -             |      |      | -          |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 0730  DATE TIME  SIGNATURE  4-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |          |            |          |            |     |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |          |            |          |            |     |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 0730  DATE TIME  SIGNATURE  4-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |          |            |          |            |     |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| SIGNATURE DATE TIME  A-14-93 0730  A-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2511101101152.24                 |        |          | 1          |          |            |     |     |      |               | -    | )    |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| 10493 Ja Kjose 74 4-14-93 6730 JOhn 4-14-93 10:10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HELINQUISHED BY                  | SIGN   | A#HBE    | 7          |          | DATE       | TIA |     | HECE | A             | BY/  | n    |            | SIGN              | IATZIRE |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE        | TIME  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of only                          |        | ,/       | 745        |          |            |     |     | ~    | - (/)         | al   | 1    | 1          | <u> </u>          | 1       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 111 00    |       |
| J & almy (4/14 1:25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | XOTAS X                          | Jos (  | 1707     | -          | 7-       | 17-75      |     |     | J    |               | 00   | 7    | 1          | 7                 |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-14-9      | 10,70 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Yrain                          | m2 I   | 1        |            | 4-0      | 4          | 1:  | 200 | P    | (   )         | (    | ( )  | _          |                   | -       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4/14        | 1:28  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |        | <i>j</i> |            |          | -          | 1   |     |      |               |      | (    |            |                   |         |        | A CONTRACTOR OF THE PARTY OF TH |             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                |        |          |            |          |            | -   |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |        |          |            |          |            |     |     |      |               |      |      |            |                   |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| HIPPING NOTES  LAB NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SHIPPING NOTES                   |        |          |            |          |            |     |     | LAB  | NOTE          | S    |      | <i>c</i> 1 | · · ·             | 17 A    | 4.00   | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2070 (1     |       |
| LAB NOTES  Sample (P-118-0493 for 8270 (1)  Droken dwing Transport. 4/14/93 DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |        |          |            |          |            |     |     | 2    | Dervi         | pl   | .e , | ( 1        |                   | 7.      | 475    | 701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 162 M       | ا ا   |
| Droken duing rawsport. 4/14/93 bx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |        |          |            |          |            |     |     |      | )NOX          | en   | de   | MI         | To                | Lan     | poor   | 4/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F19 5 6     | _     |

E-34 (1/92)

1.50

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### TRANSMITTAL MEMORANDUM

RECEIVED

MAY 2 5 1993

Burlington Environmental Inc. Technical Services

DATE: May 20, 1993

TO: David Broten, Burlington Environmental Technical Services

PROJECT NAME: Pier 91

PROJECT NUMBER: 624878-7306

LABORATORY NUMBER: 31308

Enclosed are one original and one copy of the Tier II data deliverables package for Laboratory Work Order Number 31308. The samples were received for analysis at Sound Analytical Services, Inc., on April 8, 1993.

If there are any questions regarding this data package, please do not hesitate to call me at (206) 922-2310.

Sincerely,

Andrew J. Riddell Project Manager

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

May 20, 1993

TO: Burlington Environmental Engineering

PROJECT NUMBER: 624878-7306

PROJECT NAME: Pier 91

LABORATORY WORK ORDER NUMBER: 31308

The samples were taken on 4/07/93 and were received at Sound on 4/08/93. The samples were analyzed for Volatile Organics in accordance with EPA SW-846 Method 8240, Semivolatile Organics in accordance with EPA SW-846 Method 8270, Total Petroleum Hydrocarbons by EPA Method 418.1 modified for soil, and Total Petroleum Fuel Hydrocarbons by EPA Method 8015 modified.

#### VOLATILE ORGANICS

Samples 31308-1 through 31308-6 were analyzed on 4/14/93. Methylene chloride and acetone were detected in the method blanks at levels above the IDL. Results reported for these compounds in the associated samples were flagged B to indicate this. All QC parameters were within acceptance limits.

#### SEMIVOLATILE ORGANICS

Samples 31308-1 through 31308-5 were extracted on 4/09/93 and analyzed on 4/12/93. No compounds were detected in the method blank above the IDL. All QC parameters were within acceptance limits.

### TOTAL PETROLEUM FUEL HYDROCARBONS

Samples 31308-1 through 31308-5 were extracted on 4/12/93 and analyzed on 4/14/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits.

#### TOTAL PETROLEUM HYDROCARBONS

Samples 31308-1 through 31308-5 were extracted on 4/12/93 and analyzed on 4/13/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental, Date: April 15, 1993

Technical Services

Report On: Analysis of Water

Lab No.: 31308

Page 1 of 32

IDENTIFICATION:

Samples received on 04-08-93 Project: 624878-7306 Pier 91

ANALYSIS:

Lab Sample No. 31308-1

Client ID: CP-111-0493

Volatile Organics by Method 8240 Date Analyzed: 4-14-93

| Compound                   | Concentration ug/L | PQL | Flag |
|----------------------------|--------------------|-----|------|
| Chloromethane              | ND                 | 20  | ı    |
| Bromomethane               | ND                 | 20  |      |
| Vinyl Chloride             | ND                 | 20  | _    |
| Chloroethane               | 4.2                | 20  | J    |
| Methylene Chloride         | 62                 | 10  | B1   |
| Acetone                    | 2.8                | 100 | B1,J |
| Carbon Disulfide           | ND                 | 10  |      |
| 1,1-Dichloroethene         | ND                 | 10  |      |
| 1,1-Dichloroethane         | ND                 | 10  |      |
| 1,2-Dichloroethene (Total) | ND                 | 10  |      |
| Chloroform                 | ND                 | 10  |      |
| 1,2-Dichloroethane         | ND                 | 10  |      |
| 2-Butanone                 | ND                 | 50  |      |
| 1,1,1-Trichloroethane      | ND                 | 10  |      |
| Carbon Tetrachloride       | ND                 | 10  |      |
| Vinyl Acetate              | ND                 | 50  |      |
| Bromodichloromethane       | ND                 | 10  |      |
| 1,2-Dichloropropane        | ND                 | 10  |      |
| Cis-1,3-Dichloropropene    | ND                 | 10  |      |
| Trichloroethene            | 4.6                | 10  | J    |
| Dibromochloromethane       | ND                 | 10  |      |
| 1,1,2-Trichloroethane      | ND                 | 10  |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Continued . . . .

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 2 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-1

Client ID: CP-111-0493

8240 Continued . . .

| Compound                                                                                                                                                    | Concentration ug/L                 | PQL                                          | Flag |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------|------|
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene | ND ND ND ND ND ND ND ND 2.6 ND 2.0 | 10<br>10<br>10<br>50<br>10<br>10<br>10<br>10 | J    |
| Styrene<br>Total Xylenes                                                                                                                                    | ND<br>2.4                          | 10<br>10                                     | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 101      | 88 - 110 | 81 - 117 |
|                                                       | 93       | 86 - 115 | 74 - 121 |
|                                                       | 105      | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 3 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-1

Client ID: CP-111-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-9-93
Date Analyzed: 4-12-93

| Compound                    | Concentration ug/L | PQL  | Flag |
|-----------------------------|--------------------|------|------|
|                             | -9, -              | - x- |      |
| Phenol                      | ND                 | 110  |      |
| bis(2-Chloroethyl) ether    | ND                 | 110  |      |
| 2-Chlorophenol              | ND                 | 110  |      |
| 1,3-Dichlorobenzene         | ND                 | 110  |      |
| 1,4-Dichlorobenzene         | ND                 | 110  |      |
| Benzyl Alcohol              | ND                 | 210  |      |
| 1,2-Dichlorobenzene         | ND                 | 110  | 1    |
| 2-Methylphenol              | ND                 | 110  |      |
| bis(2-Chloroisopropyl)ether | ND                 | 110  |      |
| 4-Methylphenol              | ND                 | 110  |      |
| N-Nitroso-Di-N-propylamine  | ND                 | 110  |      |
| Hexachloroethane            | ND                 | 110  |      |
| Nitrobenzene                | ND                 | 110  |      |
| Isophorone                  | ND                 | 110  |      |
| 2-Nitrophenol               | ND                 | 110  |      |
| 2,4-Dimethylphenol          | ND                 | 110  |      |
| Benzoic Acid                | ND                 | 530  |      |
| bis(2-Chloroethoxy)methane  | ND                 | 110  |      |
| 2,4-Dichlorophenol          | ND                 | 110  |      |
| 1,2,4-Trichlorobenzene      | ND                 | 110  |      |
| Naphthalene                 | ND                 | 110  |      |
| 4-Chloroaniline             | ND                 | 210  |      |
| Hexachlorobutadiene         | ND                 | 110  |      |
| 4-Chloro-3-methylphenol     | ND                 | 210  |      |

ND - Not Detected

PQL - Practical Quantitation Limit

## SOUND ANALYTICAL SERVICES, INC. SERVICES, INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 4 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-1

Client ID: CP-111-0493

#### EPA Method 8270 Continued

| Compound                              | Concentration<br>ug/L | PQL        | Flag |
|---------------------------------------|-----------------------|------------|------|
| 2-Methylnaphthalene                   | ND<br>ND              | 110<br>110 |      |
| Hexachlorocyclopentadiene             | ND<br>ND              | 110        |      |
| 2,4,6-Trichlorophenol                 | ND<br>ND              | 110        |      |
| 2,4,5-Trichlorophenol                 | ND<br>ND              | 110        |      |
| 2-Chloronaphthalene<br>2-Nitroaniline | ND                    | 530        |      |
| Dimethyl phthalate                    | ND                    | 110        |      |
| Acenaphthylene                        | ND                    | 110        |      |
| 2,6-Dinitrotoluene                    | ND                    | 110        |      |
| 3-Nitroaniline                        | ND                    | 530        |      |
| Acenaphthene                          | ND                    | 110        |      |
| 2,4-Dinitrophenol                     | ND                    | 530        |      |
| 4-Nitrophenol                         | ND                    | 530        |      |
| Dibenzofuran                          | ND                    | 110        |      |
| 2,4-Dinitrotoluene                    | ND                    | 110        |      |
| Diethylphthalate                      | ND                    | 110        |      |
| 4-Chlorophenyl phenyl ether           | ND                    | 110        |      |
| Fluorene                              | ND                    | 110        |      |
| 4-Nitroaniline                        | ND                    | 530        |      |
| 4,6-Dinitro-2-methylphenol            | ND                    | 530        |      |
| N-Nitrosodiphenylamine                | ND                    | 110        |      |
| 4-Bromophenyl phenyl ether            | ND                    | 110        |      |
| Hexachlorobenzene                     | ND                    | 110        |      |
| Pentachlorophenol                     | ND                    | 530        |      |
| Phenanthrene                          | ND                    | 110        |      |
| Anthracene                            | ND                    | 110        |      |
| Di-n-butylphthalate                   | ND                    | 110        |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 5 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-1

FPA Method 8270 Continued

Client ID: CP-111-0493

110

| EPA Method 8270 Continued  | +                  |     |      |
|----------------------------|--------------------|-----|------|
| Compound                   | Concentration ug/L | PQL | Flag |
| Fluoranthene               | ND                 | 110 |      |
| Pyrene                     | ND                 | 110 |      |
| Butyl benzyl phthalate     | ND                 | 110 |      |
| 3,3'-Dichlorobenzidine     | ND                 | 210 |      |
| Benzo(a)anthracene         | ND                 | 110 |      |
| Chrysene                   | ND                 | 110 |      |
| bis(2-ethylhexyl)phthalate | ND                 | 110 |      |
| Di-n-octyl phthalate       | ND                 | 110 |      |
| Benzo(b)fluoranthene       | ND                 | 110 |      |
| Benzo(k)fluoranthene       | ND                 | 110 |      |
| Benzo(a)pyrene             | ND                 | 110 |      |
| Indeno(1,2,3-cd)pyrene     | ND                 | 110 |      |
| Dibenz(a,h)anthracene      | ND                 | 110 |      |
|                            |                    |     | 1    |

ND

ND - Not Detected

Benzo(g,h,i)perylene

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 63       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 73       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 67       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 16       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 38       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 59       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 6 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-1

Client ID: CP-111-0493

TPH Per EPA Method 418.1 Date Extracted: 4-12-93 Date Analyzed: 4-13-93

Parameter Concentration, mg/L PQL Flag

Total Petroleum

Hydrocarbons 30 1.0

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-12-93 Date Analyzed: 1-14-93

Parameter Concentration, mg/L PQL Flag

Total Petroleum
Fuel Hydrocarbons 45 0.75

TPH as Diesel

SURROGATE RECOVERY, %
1-chlorooctane 92
o-terphenyl 100

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 7 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-2

Client ID: CP-911-0493

Volatile Organics by Method 8240 Date Analyzed: 4-14-93

| Compound                   | Concentration<br>ug/L | PQL | Flag |
|----------------------------|-----------------------|-----|------|
| Chloromethane              | ND                    | 20  |      |
| Bromomethane               | ND                    | 20  |      |
| Vinyl Chloride             | ND                    | 20  |      |
| Chloroethane               | 3.8                   | 20  | J    |
| Methylene Chloride         | 56                    | 10  | B1   |
| Acetone                    | 5.2                   | 100 | B1,J |
| Carbon Disulfide           | ND                    | 10  |      |
| 1,1-Dichloroethene         | ND                    | 10  |      |
| 1,1-Dichloroethane         | ND                    | 10  |      |
| 1,2-Dichloroethene (Total) | ND                    | 10  |      |
| Chloroform                 | ND                    | 10  |      |
| 1,2-Dichloroethane         | ND                    | 10  |      |
| 2-Butanone                 | ND                    | 50  |      |
| 1,1,1-Trichloroethane      | ND                    | 10  |      |
| Carbon Tetrachloride       | ND                    | 10  |      |
| Vinyl Acetate              | ND                    | 50  |      |
| Bromodichloromethane       | ND                    | 10  |      |
| 1,2-Dichloropropane        | ND                    | 10  |      |
| Cis-1,3-Dichloropropene    | ND                    | 10  |      |
| Trichloroethene            | 4.4                   | 10  | J    |
| Dibromochloromethane       | ND                    | 10  |      |
| 1,1,2-Trichloroethane      | ND                    | 10  |      |

ND - Not Detected

PQL - Practical Quantitation Limit

## SOUND ANALYTICAL SERVICES, INC. SHOWING, I

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 8 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-2

Client ID: CP-911-0493

8240 Continued . . .

| Compound                             | Concentration ug/L | PQL      | Flag |
|--------------------------------------|--------------------|----------|------|
| Benzene<br>Trans-1,3-Dichloropropene | ND<br>ND           | 10<br>10 |      |
| Bromoform                            | ND                 | 10       |      |
| 4-Methyl-2-Pentanone                 | ND                 | 50       |      |
| 2-Hexanone                           | ND                 | 10       |      |
| Tetrachloroethene                    | ND                 | 10       |      |
| 1,1,2,2-Tetrachloroethane            | ND                 | 10       |      |
| Toluene                              | 2.8                | 10       | J    |
| Chlorobenzene                        | ND                 | 10       |      |
| Ethyl Benzene                        | 2.2                | 10       | J    |
| Styrene                              | ND                 | 10       |      |
| Total Xylenes                        | 2.6                | 10       | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 100      | 88 - 110 | 81 - 117 |
|                                                       | 96       | 86 - 115 | 74 - 121 |
|                                                       | 106      | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 9 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-2

Client ID: CP-911-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-9-93
Date Analyzed: 4-12-93

|                             | +                  |     |      |
|-----------------------------|--------------------|-----|------|
| Compound                    | Concentration ug/L | PQL | Flag |
| Phenol                      | ND                 | 110 |      |
| bis(2-Chloroethyl) ether    | ND                 | 110 |      |
| 2-Chlorophenol              | ND                 | 110 |      |
| 1,3-Dichlorobenzene         | ND                 | 110 |      |
| 1,4-Dichlorobenzene         | ND                 | 110 |      |
| Benzyl Alcohol              | ND                 | 210 |      |
| 1,2-Dichlorobenzene         | ND                 | 110 |      |
| 2-Methylphenol              | ND                 | 110 |      |
| bis(2-Chloroisopropyl)ether | ND                 | 110 |      |
| 4-Methylphenol              | ND                 | 110 |      |
| N-Nitroso-Di-N-propylamine  | ND                 | 110 |      |
| Hexachloroethane            | ND                 | 110 |      |
| Nitrobenzene                | ND                 | 110 |      |
| Isophorone                  | ND                 | 110 |      |
| 2-Nitrophenol               | ND                 | 110 |      |
| 2,4-Dimethylphenol          | ND                 | 110 |      |
| Benzoic Acid                | ND                 | 530 |      |
| bis(2-Chloroethoxy)methane  | ND                 | 110 |      |
| 2,4-Dichlorophenol          | ND                 | 110 |      |
| 1,2,4-Trichlorobenzene      | ND                 | 110 |      |
| Naphthalene                 | ND                 | 110 |      |
| 4-Chloroaniline             | ND                 | 210 |      |
| Hexachlorobutadiene         | ND                 | 110 |      |
| 4-Chloro-3-methylphenol     | ND                 | 210 |      |
|                             | •                  |     |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 10 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-2

Client ID: CP-911-0493

EPA Method 8270 Continued

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| 2-Methylnaphthalene         | ND                 | 110 |      |
| Hexachlorocyclopentadiene   | ND                 | 110 |      |
| 2,4,6-Trichlorophenol       | ND                 | 110 |      |
| 2,4,5-Trichlorophenol       | ND                 | 110 |      |
| 2-Chloronaphthalene         | ND                 | 110 |      |
| 2-Nitroaniline              | ND                 | 530 |      |
| Dimethyl phthalate          | ND                 | 110 |      |
| Acenaphthylene              | ND                 | 110 |      |
| 2,6-Dinitrotoluene          | ND                 | 110 |      |
| 3-Nitroaniline              | ND                 | 530 |      |
| Acenaphthene                | ND                 | 110 |      |
| 2,4-Dinitrophenol           | ND                 | 530 |      |
| 4-Nitrophenol               | ND                 | 530 |      |
| Dibenzofuran                | ND                 | 110 |      |
| 2,4-Dinitrotoluene          | ND                 | 110 |      |
| Diethylphthalate            | ND                 | 110 |      |
| 4-Chlorophenyl phenyl ether | ND                 | 110 |      |
| Fluorene                    | ND                 | 110 |      |
| 4-Nitroaniline              | ND                 | 530 |      |
| 4,6-Dinitro-2-methylphenol  | ND                 | 530 |      |
| N-Nitrosodiphenylamine      | ND                 | 110 |      |
| 4-Bromophenyl phenyl ether  | ND                 | 110 |      |
| Hexachlorobenzene           | ND                 | 110 |      |
| Pentachlorophenol           | ND                 | 530 |      |
| Phenanthrene                | ND                 | 110 |      |
| Anthracene                  | ND                 | 110 |      |
| Di-n-butylphthalate         | ND                 | 110 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 11 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-2

Client ID: CP-911-0493

| EPA Method 8270 Continued                                                                                                                                                                                                                                                |                                          |                                                                    |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|------|
| Compound                                                                                                                                                                                                                                                                 | Concentration<br>ug/L                    | PQL                                                                | Flag |
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | ND N | 110<br>110<br>110<br>210<br>110<br>110<br>110<br>110<br>110<br>110 | J    |
|                                                                                                                                                                                                                                                                          |                                          |                                                                    |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 58       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 62       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 64       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 18       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 39       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 61       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 12 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-2

Client ID: CP-911-0493

TPH Per EPA Method 418.1 Date Extracted: 4-12-93 Date Analyzed: 4-13-93

| <u>Parameter</u>                | Concentration, mg/L | POL | Flag |
|---------------------------------|---------------------|-----|------|
| Total Petroleum<br>Hydrocarbons | 6.1                 | 1.0 |      |

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-12-93 Date Analyzed: 4-14-93

| <u>Parameter</u>                     | Concentration, mq/L |      | riaq |
|--------------------------------------|---------------------|------|------|
| Total Petroleum<br>Fuel Hydrocarbons | 2.0                 | 0.75 |      |
| TPH as                               | Diesel              |      |      |
|                                      |                     |      |      |
| SURROGATE RECOVERY, %                |                     |      |      |
| 1-chlorooctane                       | 84                  |      |      |
| o-terphenyl                          | 91                  |      |      |
|                                      |                     |      |      |

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 13 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-3

Client ID: CP-113-0493

Volatile Organics by Method 8240 Date Analyzed: 4-14-93

| Compound                                                                                                                                                                                                                                                                                                                                                                                          | Concentration ug/L                                                                                                                               | PQL                                                                                        | Flag       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|
| Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane | ND<br>ND<br>39<br>ND<br>1.3<br>ND<br>ND<br>ND<br>35<br>1.8<br>0.78<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 10<br>10<br>10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | B1, J<br>J |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 14 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-3

Client ID: CP-113-0493

8240 Continued . . .

| Compound                                                                                                                                                                          | Concentration ug/L                       | PQL                                                                                         | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|------|
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND N | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 98       | 88 - 110 | 81 - 117 |
|                                                       | 96       | 86 - 115 | 74 - 121 |
|                                                       | 106      | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 15 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-3

Client ID: CP-113-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-9-93
Date Analyzed: 4-12-93

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                           | Concentration ug/L                       | PQL                                                                | Flag |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|------|
| Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol | ND N | 9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8 |      |

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 16 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-3

Client ID: CP-113-0493

#### EPA Method 8270 Continued

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| 2-Methylnaphthalene         | ND                 | 9.8 |      |
| Hexachlorocyclopentadiene   | ND                 | 9.8 |      |
| 2,4,6-Trichlorophenol       | ND                 | 9.8 |      |
| 2,4,5-Trichlorophenol       | ND                 | 9.8 |      |
| 2-Chloronaphthalene         | ND                 | 9.8 |      |
| 2-Nitroaniline              | ND                 | 49  |      |
| Dimethyl phthalate          | ND                 | 9.8 |      |
| Acenaphthylene              | ND                 | 9.8 |      |
| 2,6-Dinitrotoluene          | ND                 | 9.8 |      |
| 3-Nitroaniline              | ND                 | 49  |      |
| Acenaphthene                | ND                 | 9.8 |      |
| 2,4-Dinitrophenol           | ND                 | 49  |      |
| 4-Nitrophenol               | ND                 | 49  |      |
| Dibenzofuran                | ND                 | 9.8 |      |
| 2,4-Dinitrotoluene          | ND                 | 9.8 |      |
| Diethylphthalate            | ND                 | 9.8 |      |
| 4-Chlorophenyl phenyl ether | ND                 | 9.8 |      |
| Fluorene                    | ND                 | 9.8 |      |
| 4-Nitroaniline              | ND                 | 49  |      |
| 4,6-Dinitro-2-methylphenol  | ND                 | 49  |      |
| N-Nitrosodiphenylamine      | ND                 | 9.8 |      |
| 4-Bromophenyl phenyl ether  | ND                 | 9.8 |      |
| Hexachlorobenzene           | ND                 | 9.8 |      |
| Pentachlorophenol           | ND                 | 49  |      |
| Phenanthrene                | ND                 | 9.8 |      |
| Anthracene                  | ND                 | 9.8 |      |
| Di-n-butylphthalate         | 3.1                | 9.8 | J    |
|                             |                    |     |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 17 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-3

Client ID: CP-113-0493

| EPA Method 8270 Continued                                                                                                                                                                                                                                                |                                                                 |                                                                    |      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|------|--|--|
| Compound                                                                                                                                                                                                                                                                 | Concentration<br>ug/L                                           | PQL                                                                | Flag |  |  |
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | ND ND ND ND ND ND ND 6.2 ND | 9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8 | J    |  |  |

ND - Not Detected PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 62       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 59       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 59       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 19       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 37       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 77       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 18 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-3

Client ID: CP-113-0493

TPH Per EPA Method 418.1 Date Extracted: 4-12-93 Date Analyzed: 4-13-93

Parameter Concentration, mg/L POL Flag

Total Petroleum

Hydrocarbons 2.1 1.0

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 4-12-93

Date Analyzed: 4-14-93

Parameter Concentration, mg/L PQL Flag

Total Petroleum
Fuel Hydrocarbons ND 0.75

SURROGATE RECOVERY, %
1-chlorooctane 92
o-terphenyl 103

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 19 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-4

Client ID: CP-114-0493

Volatile Organics by Method 8240 Date Analyzed: 4-14-93

| Compound                                                                                                                                                                                                                                                                                              | Concentration ug/L                           | PQL                                                                                        | Flag |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------|------|
| Compound  Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane | ug/L  ND | 10<br>10<br>10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Flag |
| Cis-1,3-Dichloropropene<br>Trichloroethene                                                                                                                                                                                                                                                            | ND<br>ND                                     | 5                                                                                          |      |
| Dibromochloromethane<br>1,1,2-Trichloroethane                                                                                                                                                                                                                                                         | ND<br>ND                                     | 5<br>5                                                                                     |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 20 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-4

Client ID: CP-114-0493

8240 Continued . . .

| 0240 Concinued :                                                                                                                                                                  |                                          |                                       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|------|
| Compound                                                                                                                                                                          | Concentration<br>ug/L                    | PQL                                   | Flag |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND N | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |      |
|                                                                                                                                                                                   | <del></del>                              |                                       | *    |

ND - Not Detected

POL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 99       | 88 - 110 | 81 - 117 |
|                                                       | 97       | 86 - 115 | 74 - 121 |
|                                                       | 110      | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 21 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-4

Client ID: CP-114-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-9-93
Date Analyzed: 4-12-93

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| Phenol                      | ND                 | 10  |      |
| bis(2-Chloroethyl) ether    | ND                 | 10  |      |
| 2-Chlorophenol              | ND                 | 10  |      |
| 1,3-Dichlorobenzene         | ND                 | 10  |      |
| 1,4-Dichlorobenzene         | ND                 | 10  |      |
| Benzyl Alcohol              | ND                 | 20  |      |
| 1,2-Dichlorobenzene         | ND                 | 10  |      |
| 2-Methylphenol              | ND                 | 10  |      |
| bis(2-Chloroisopropyl)ether | ND                 | 10  |      |
| 4-Methylphenol              | ND                 | 10  |      |
| N-Nitroso-Di-N-propylamine  | ND                 | 10  |      |
| Hexachloroethane            | ND                 | 10  |      |
| Nitrobenzene                | ND                 | 10  |      |
| Isophorone                  | ND                 | 10  |      |
| 2-Nitrophenol               | ND                 | 10  |      |
| 2,4-Dimethylphenol          | ND                 | 10  |      |
| Benzoic Acid                | ND                 | 50  |      |
| bis(2-Chloroethoxy)methane  | ND                 | 10  |      |
| 2,4-Dichlorophenol          | ND                 | 10  |      |
| 1,2,4-Trichlorobenzene      | ND                 | 10  |      |
| Naphthalene                 | ND                 | 10  |      |
| 4-Chloroaniline             | ND                 | 20  |      |
| Hexachlorobutadiene         | ND                 | 10  |      |
| 4-Chloro-3-methylphenol     | ND                 | 20  |      |
|                             |                    |     |      |

ND - Not Detected

PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. MANUELS, INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 22 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-4

Client ID: CP-114-0493

#### EPA Method 8270 Continued

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| 2-Methylnaphthalene         | ND                 | 10  |      |
| Hexachlorocyclopentadiene   | ND                 | 10  |      |
| 2,4,6-Trichlorophenol       | ND                 | 10  |      |
| 2,4,5-Trichlorophenol       | ND                 | 10  |      |
| 2-Chloronaphthalene         | ND                 | 10  |      |
| 2-Nitroaniline              | ND                 | 50  |      |
| Dimethyl phthalate          | ND                 | 10  | 1    |
| Acenaphthylene              | ND                 | 10  |      |
| 2,6-Dinitrotoluene          | ND                 | 10  |      |
| 3-Nitroaniline              | ND                 | 50  |      |
| Acenaphthene                | ND                 | 10  |      |
| 2,4-Dinitrophenol           | ND                 | 50  |      |
| 4-Nitrophenol               | ND                 | 50  |      |
| Dibenzofuran                | ND                 | 10  |      |
| 2,4-Dinitrotoluene          | ND                 | 10  |      |
| Diethylphthalate            | ND                 | 10  | 1    |
| 4-Chlorophenyl phenyl ether | ND                 | 10  |      |
| Fluorene                    | ND                 | 10  |      |
| 4-Nitroaniline              | ND                 | 50  |      |
| 4,6-Dinitro-2-methylphenol  | ND                 | 50  |      |
| N-Nitrosodiphenylamine      | ND                 | 10  |      |
| 4-Bromophenyl phenyl ether  | ND                 | 10  |      |
| Hexachlorobenzene           | ND                 | 10  | 1    |
| Pentachlorophenol           | ND                 | 50  |      |
| Phenanthrene                | ND                 | 10  |      |
| Anthracene                  | ND                 | 10  |      |
| Di-n-butylphthalate         | ND                 | 10  |      |

ND - Not Detected POL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 23 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-4

Client ID: CP-114-0493

EPA Method 8270 Continued

| Compound                                                                                                                                                                                                                      | Concentration ug/L                       | PQL                                                      | Flag |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|------|
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene | ND N | 10<br>10<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10 |      |
| <pre>Dibenz(a,h)anthracene Benzo(g,h,i)perylene</pre>                                                                                                                                                                         | ND<br>ND                                 | 10<br>10                                                 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Semi-volatile Sulloga                                                                                                                | 162      |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| Surrogate                                                                                                                            | Percent  | Control  | Limits   |
| Compound                                                                                                                             | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 77       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 58       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 57       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 24       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 48       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 79       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 24 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-4

Client ID: CP-114-0493

TPH Per EPA Method 418.1 Date Extracted: 4-12-93 Date Analyzed: 4-13-93

PQL Flag Concentration, mq/L Parameter

Total Petroleum

1.0 ND Hydrocarbons

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-12-93 Date Analyzed: 4-14-93

PQL Flag Parameter Concentration, mq/L

Total Petroleum

0.75 ND Fuel Hydrocarbons

SURROGATE RECOVERY, % 83 1-chlorooctane

96 o-terphenyl

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 25 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-5

Client ID: CP-112-0493

Volatile Organics by Method 8240 Date Analyzed: 4-14-93

| Compound                                   | Concentration ug/L | PQL      | Flag  |
|--------------------------------------------|--------------------|----------|-------|
| Chloromethane                              | ND<br>ND           | 10<br>10 |       |
| Bromomethane<br>Vinyl Chloride             | ND                 | 10       |       |
| Chloroethane                               | 3.2                | 10       | J     |
| Methylene Chloride                         | 0.73               | 5        | B1, J |
| Acetone                                    | ND                 | 50       |       |
| Carbon Disulfide                           | ND                 | 5        |       |
| 1,1-Dichloroethene                         | ND                 | 5        |       |
| 1,1-Dichloroethane                         | 1.7                | 5        | J     |
| 1,2-Dichloroethene (Total)                 | ND                 | 5        |       |
| Chloroform                                 | ND                 | 5        |       |
| 1,2-Dichloroethane                         | ND                 | 5        |       |
| 2-Butanone                                 | ND                 | 25       |       |
| 1,1,1-Trichloroethane                      | ND                 | 5 5      |       |
| Carbon Tetrachloride                       | ND                 |          |       |
| Vinyl Acetate                              | ND<br>ND           | 25<br>5  |       |
| Bromodichloromethane                       | ND<br>ND           | 5        |       |
| 1,2-Dichloropropane                        | ND                 | 5        |       |
| Cis-1,3-Dichloropropene                    | 1.1                | 5        | J     |
| Trichloroethene                            | ND                 | 5        |       |
| Dibromochloromethane 1,1,2-Trichloroethane | ND                 | 5        |       |
| 1/1/2 1110111111111111111111111111111111   |                    |          |       |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 26 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-5

Client ID: CP-112-0493

8240 Continued . .

| 0240 Concinued :                                                                                                                                                                  |                                            |                                       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|------|
| Compound                                                                                                                                                                          | Concentration<br>ug/L                      | PQL                                   | Flag |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | 1.8 ND | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | J    |
|                                                                                                                                                                                   |                                            | 7                                     |      |

ND - Not Detected

POL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 100      | 88 - 110 | 81 - 117 |
|                                                       | 102      | 86 - 115 | 74 - 121 |
|                                                       | 114      | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 27 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-5

Client ID: CP-112-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-9-93 Date Analyzed: 4-12-93

| Compound                                                 | Concentration ug/L | PQL        | Flag |
|----------------------------------------------------------|--------------------|------------|------|
| Phenol<br>bis(2-Chloroethyl) ether                       | ND<br>ND           | 9.9        |      |
| 2-Chlorophenol 1,3-Dichlorobenzene                       | ND<br>ND           | 9.9<br>9.9 |      |
| 1,4-Dichlorobenzene<br>Benzyl Alcohol                    | ND<br>ND           | 9.9<br>20  |      |
| 1,2-Dichlorobenzene                                      | ND                 | 9.9        |      |
| 2-Methylphenol<br>bis(2-Chloroisopropyl)ether            | ND<br>ND           | 9.9        |      |
| 4-Methylphenol<br>N-Nitroso-Di-N-propylamine             | ND<br>ND           | 9.9        |      |
| Hexachloroethane                                         | ND                 | 9.9        |      |
| Nitrobenzene<br>Isophorone                               | ND<br>ND           | 9.9        |      |
| 2-Nitrophenol                                            | ND<br>ND           | 9.9        |      |
| 2,4-Dimethylphenol Benzoic Acid                          | ND                 | 50         |      |
| <pre>bis(2-Chloroethoxy)methane 2,4-Dichlorophenol</pre> | ND<br>ND           | 9.9        |      |
| 1,2,4-Trichlorobenzene                                   | ND                 | 9.9        |      |
| Naphthalene<br>4-Chloroaniline                           | ND<br>ND           | 20         |      |
| Hexachlorobutadiene<br>4-Chloro-3-methylphenol           | ND<br>ND           | 9.9        |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91

Page 28 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-5

Client ID: CP-112-0493

#### EPA Method 8270 Continued

| Compound                                                                                                                                                                                                                                                                      | Concentration ug/L                       | PQL                                                | Flag |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|------|
| 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene |                                          | PQL 9.9 9.9 9.9 9.9 9.9 50 9.9 9.9 50 9.9 9.9      | Flag |
| Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate                                             | ND N | 9.9<br>9.9<br>50<br>50<br>9.9<br>9.9<br>9.9<br>9.9 | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 29 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-5

Client ID: CP-112-0493

9.9

| EPA Method 8270 Continued                                                                                                                                                                                                                           |                                          |                                               |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|------|
| Compound                                                                                                                                                                                                                                            | Concentration ug/L                       | PQL                                           | Flag |
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene | ND N | 9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9 | J    |
| Dibenz(a, n) anchiacene                                                                                                                                                                                                                             | ND.                                      | 3.3                                           |      |

ND

ND - Not Detected PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

Benzo(q,h,i)perylene

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 64       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 52       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 53       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 23       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 45       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 75       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 30 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-5

Client ID: CP-112-0493

TPH Per EPA Method 418.1 Date Extracted: 4-12-93 Date Analyzed: 4-13-93

Parameter Concentration, mg/L PQL Flag

Total Petroleum
Hydrocarbons 2.8 1.0

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 4-12-93

Date Analyzed: 4-14-93

Parameter Concentration, mg/L POL Flag

Total Petroleum
Fuel Hydrocarbons ND 0.75

SURROGATE RECOVERY, %
1-chlorooctane 92
o-terphenyl 106

ND - Not Detected PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 31 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-6

Client ID: Trip Blank #3

Volatile Organics by Method 8240 Date Analyzed: 4-14-93

| Compound  Compound  Chloromethane  Bromomethane  Vinyl Chloride Chloroethane  ND ND ND ND                                                                                                                                                                                                                                                                      | PQL<br>10<br>10<br>10<br>10                                                                 | Flag |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------|
| Bromomethane ND Vinyl Chloride ND                                                                                                                                                                                                                                                                                                                              | 10<br>10                                                                                    |      |
| Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane ND | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | B1   |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 32 of 32 Lab No. 31308 April 15, 1993

Lab Sample No. 31308-6

Client ID: Trip Blank #3

8240 Continued . .

| Benzene ND                                                                                                                                                                  | 5                                                                                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Trans-1,3-Dichloropropene  Bromoform  4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | 25<br>25<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |  |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 96       | 88 - 110 | 81 - 117 |
|                                                       | 88       | 86 - 115 | 74 - 121 |
|                                                       | 106      | 76 - 114 | 70 - 121 |

SOUND ANALYTICAL SERVICES

DENNIS L. BEAN

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 1 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31308qc1

Matrix:

Water

Units:

mg/L

Date:

April 15, 1993

#### DUPLICATE

| Dup. No. 31340-1                               |               |                  |     |      |       |
|------------------------------------------------|---------------|------------------|-----|------|-------|
| Parameter                                      | Sample<br>(S) | Duplicate<br>(D) | RPD | PQL  | Flags |
| Total Petroleum<br>Fuel Hydrocarbons           | ND            | ND               | 0.0 | 0.75 |       |
| SURROGATE RECOVERY% 1-chlorooctane o-terphenyl | 87<br>98      | 83<br>100        |     |      |       |

RPD = relative percent difference =  $[(S - D) / ((S + D) / 2)] \times 100$ 

#### MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

| MS/MSD No. 012R0101.D                |                          |                                    |                        |    |                                 |     |
|--------------------------------------|--------------------------|------------------------------------|------------------------|----|---------------------------------|-----|
| Parameter                            | Sample<br>Result<br>(SR) | Spiked<br>Sample<br>Result<br>(MS) | Spike<br>Added<br>(SA) | %R | Spike<br>Dup<br>Result<br>(MSD) | RPD |
| Total Petroleum<br>Fuel Hydrocarbons | ND                       | 327                                | 402                    | 81 | 326                             | 0.3 |

#### QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 2 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31308qc1

Units:

mg/L

Date:

April 15, 1993

#### BLANK SPIKE RECOVERY

| BS No. 032R0101.D                    |             |                    |     |
|--------------------------------------|-------------|--------------------|-----|
| Parameter                            | Spike Added | Spike<br>Recovered | %R  |
| Total Petroleum<br>Fuel Hydrocarbons | 402         | 406                | 101 |

%R = Percent Recovery
= [(BS - SR) / SA] x 100

#### METHOD BLANK

Blank No. 011R0101.D

| Parameter                                      | Result    | PQL  |
|------------------------------------------------|-----------|------|
| Total Petroleum<br>Fuel Hydrocarbons           | ND        | 0.75 |
| SURROGATE RECOVERY% 1-chlorooctane o-terphenyl | 96<br>111 |      |

ND - Not Detected POL - Practical Quantitation Limit

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 1 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

31308qc2

Units:

uq/L

Date:

April 15, 1993 Blank No: SBLK88-S8408

METHOD BLANK

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                   | PQL                                                                             | Flags |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|-------|
| Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene | ND N | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 |       |

PQL - Practical Quantitation Limit

ND - Not Detected

### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 2 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

31308qc2

Units:

ug/L

Date:

April 15, 1993

Blank No: SBLK88-S8408

METHOD BLANK

PQL - Practical Quantitation Limit

ND - Not Detected

#### QUALITY CONTROL REPORT

#### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 3 of 3

Client:

Burlington Environmental, Technical Services

Lab No: 31308qc2 Date: April 15 April 15, 1993 Blank No: SBLK88-S8408

| SEMIVOLATILE SURROGATES |          |          |          |  |
|-------------------------|----------|----------|----------|--|
| Surrogate               | Percent  | Control  | Limits   |  |
|                         | Recovery | Water    | Soil     |  |
| Nitrobenzene - d5       | 71       | 35 - 114 | 23 - 120 |  |
| 2-Fluorobiphenyl        | 56       | 43 - 116 | 30 - 115 |  |
| p-Terphenyl-d14         | 62       | 33 - 141 | 18 - 137 |  |
| Phenol-d6               | 26       | 10 - 94  | 24 - 113 |  |
| 2-Fluorophenol          | 50       | 21 - 100 | 25 - 121 |  |
| 2,4,6-TBP               | 70       | 10 - 123 | 19 - 122 |  |

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### WATER MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name:

Burlington Environmental, Technical Services

Lab No:

31308qc3

Date:

April 15, 1993

| SEMI-VOLATIĻE ORGAŅICS    |              |                  |            |          |             |          |      |       |
|---------------------------|--------------|------------------|------------|----------|-------------|----------|------|-------|
| COMPOUND                  | SPIKE (ug/L) | SAMPLE<br>RESULT | CONC<br>MS | %<br>REC | CONC<br>MSD | %<br>REC | RPD  | FLAGS |
| Phenol                    | 100          | ND               | 23         | 23       | 25          | 25       | 5.9  |       |
| 2-Chlorophenol            | 100          | ND               | 56         | 56       | 56          | 56       | 0.54 |       |
| 1,4-Dichlorobenzene       | 100          | ND               | 39         | 39       | 42          | 42       | 6.7  |       |
| N-nitrosodi-n-Propylamine | 100          | ND               | 54         | 54       | 60          | 60       | 10   |       |
| 1,2,4-Trichlorobenzene    | 100          | ND               | 45         | 45       | 49          | 49       | 7.5  |       |
| 4-Chloro-3-Methylphenol   | 100          | ND               | 57         | 57       | 57          | 57       | 0.18 |       |
| Acenaphthene              | 100          | ND               | 49         | 49       | 53          | 53       | 7.0  |       |
| 4-Nitrophenol             | 100          | ND               | 21         | 21       | 23          | 23       | 12   |       |
| 2,4 Dinitrotoluene        | 100          | ND               | 54         | 54       | 59          | 59       | 7.6  |       |
| Pentachlorophenol         | 100          | ND               | 43         | 43       | 46          | 46       | 6.7  |       |
| Pyrene                    | 100          | ND               | 59         | 59       | 61          | 61       | 3.2  |       |

RPD = Relative Percent Difference

<sup>%</sup> REC = Percent Recovery

| ADVISORY LIMITS:        | RPD | % RE | COVERY |
|-------------------------|-----|------|--------|
|                         |     |      |        |
| Phenol                  | 42  | 12   | - 89   |
| 2-Chlorophenol          | 40  | 27   | - 123  |
| 1,4-Dichlorobenzene     | 28  | 36   | - 97   |
| N-nitrosodi-n-          |     |      |        |
| Propylamine             | 38  | 41   | - 116  |
| 1,2,4-Trichlorobenzene  | 28  | 39   | - 98   |
| 4-Chloro-3-Methylphenol | 42  | 23   | - 97   |
| Acenaphthene            | 31  | 46   | - 118  |
| 4-Nitrophenol           | 50  | 10   | - 80   |
| 2,4 Dinitrotoluene      | 38  | 24   | - 96   |
| Pentachlorophenol       | 50  | 9    | - 103  |
| Pyrene                  | 31  | 26   | - 127  |
| _                       |     |      |        |

### SOUND ANALYTICAL SERVICES, INC. SARVICES, INC.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### QUALITY CONTROL REPORT

#### VOLATILE ORGANICS - METHOD 8240

Client:

Burlington Environmental, Technical Services

Lab No:

31308qc4

Units:

ug/L

Date:

April 15, 1993

BLANK SPIKE RECOVERY

|                    |                                  | BL                     | ANK SPIK | E RECOV                                  | ERI                    |     |     |      |
|--------------------|----------------------------------|------------------------|----------|------------------------------------------|------------------------|-----|-----|------|
| Parameter          | Blank<br>Spike<br>Result<br>(BS) | Spike<br>Added<br>(SA) | %R       | Blank<br>Spike<br>Dup<br>Result<br>(BSD) | Spike<br>Added<br>(SA) | %R  | RPD | Flag |
| 1,1-DCE            | 51                               | 50                     | 102      | 53                                       | 50                     | 106 | 3.8 |      |
| TCE                | 54                               | 50                     | 108      | 56                                       | 50                     | 112 | 3.6 |      |
| Chloro-<br>benzene | 57                               | 50                     | 114      | 58                                       | 50                     | 116 | 1.7 |      |
| Toluene            | 55                               | 50                     | 110      | 56                                       | 50                     | 112 | 1.8 |      |
| Benzene            | 55                               | 50                     | 110      | 55                                       | 50                     | 116 | 0.0 |      |

%R = Percent Recovery

 $= [(BS / SA] \times 100$ 

RPD = Relative Percent Difference

 $= [(BS - BSD) / ((BS + BSD) / 2] \times 100$ 

ND - Not Detected

| ADVISORY LIMITS    | RPD | % RECOVERY |
|--------------------|-----|------------|
| 1,1-Dichloroethene | 22  | 59 - 172   |
| Trichloroethene    | 24  | 62 - 137   |
| Chlorobenzene      | 21  | 60 - 133   |
| Toluene            | 21  | 59 - 139   |
| Benzene            | 21  | 66 - 142   |

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### VOLATILE ORGANICS PER EPA METHOD 8240

#### Page 1 of 2

Client: Burlington Environmental, Technical Services

Lab No: 31308qc5

Units: ug/L

Date: April 15, 1993

Blank No: V9835

| METHOD BLANK |
|--------------|
|--------------|

| Compound                   | Result | PQL                   | Flags |
|----------------------------|--------|-----------------------|-------|
| Chloromethane              | ND     | 10                    |       |
| Bromomethane               | ND     | 10                    |       |
| Vinyl Chloride             | ND     | 10                    |       |
| Chloroethane               | ND     | 10                    |       |
| Methylene Chloride         | 15     | 5                     |       |
| Acetone                    | 1.6    | 50                    | J     |
| Carbon Disulfide           | ND     | 5                     |       |
| 1,1-Dichloroethene         | ND     | 5                     |       |
| 1,1-Dichloroethane         | ND     | 5<br>5<br>5<br>5      |       |
| 1,2-Dichloroethene (Total) | ND     | 5                     |       |
| Chloroform                 | ND     | 5                     |       |
| 1,2-Dichloroethane         | ND     |                       |       |
| 2-Butanone                 | ND     | 25                    |       |
| 1,1,1-Trichloroethane      | ND     | 5                     |       |
| Carbon Tetrachloride       | ND     | 5                     |       |
| Vinyl Acetate              | ND     | 25                    |       |
| Bromodichloromethane       | ND     | 5                     |       |
| 1,2-Dichloropropane        | ND     | 5                     |       |
| Cis-1,3-Dichloropropene    | ND     | 5                     |       |
| Trichloroethene            | ND     | 5<br>5                |       |
| Dibromochloromethane       | ND     | 5                     |       |
| 1,1,2-Trichloroethane      | ND     | 5                     |       |
| Benzene                    | ND     | 5                     |       |
| Trans-1,3-Dichloropropene  | ND     | 5                     |       |
| Bromoform                  | ND     | 5                     |       |
| 4-Methyl-2-Pentanone       | ND     | 25                    |       |
| 2-Hexanone                 | ND     | 5                     |       |
| Tetrachloroethene          | ND     | 5                     |       |
| 1,1,2,2-Tetrachloroethane  | ND     |                       |       |
| Toluene                    | ND     | 5<br>5<br>5<br>5<br>5 |       |
| Chlorobenzene              | ND     | 5                     |       |
| Ethyl Benzene              | ND     | 5                     |       |
| Styrene                    | ND     | 5                     |       |
| Total Xylenes              | ND     | 5                     |       |
|                            |        |                       |       |

PQL - Practical Quantitation Limit ND - Not Detected

ND - Not Detected

#### **OUALITY CONTROL REPORT**

#### VOLATILE ORGANICS PER EPA METHOD 8240

Page 2 of 2

Client: Burlington Environmental, Technical Services

Lab No: 31308qc5

Date:

April 15, 1993

Blank No: V9835

VOLATILE SURROGATES

| Surrogate                                             | Percent<br>Recovery | Carried Communication Control | l Limits<br>Soil |
|-------------------------------------------------------|---------------------|-------------------------------|------------------|
| Toluene - d8 Bromofluorobenzene 1,2-Dichloroethane d4 | 101                 | 86 - 115                      | 81 - 117         |
|                                                       | 90                  | 76 - 114                      | 74 - 121         |
|                                                       | 102                 | 88 - 110                      | 70 - 121         |

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### QUALITY CONTROL REPORT

TPH by Method 418.1

Client:

Burlington Environmental, Technical Services

Lab No:

31308qc6

Matrix: Units:

Water mg/L

Date:

April 15, 1993

METHOD BLANK

|                                 | METHOD DUANT |     |
|---------------------------------|--------------|-----|
| Parameter                       | Result       | PQL |
| Total Petroleum<br>Hydrocarbons | ND           | 1.1 |

ND - Not Detected POL - Practical Quantitation Limit

BLANK SPIKE RECOVERY

|                                    |                                  | БЦ                     | WIAV DLIV | E RECOV                                  |                        |    |     |      |
|------------------------------------|----------------------------------|------------------------|-----------|------------------------------------------|------------------------|----|-----|------|
| Parameter                          | Blank<br>Spike<br>Result<br>(BS) | Spike<br>Added<br>(SA) | %R        | Blank<br>Spike<br>Dup<br>Result<br>(BSD) | Spike<br>Added<br>(SA) | %R | RPD | Flag |
| Total<br>Petroleum<br>Hydrocarbons | 70                               | 100                    | 70        | 84                                       | 100                    | 84 | 18  |      |

%R = Percent Recovery
= ( BS / SA ) x 100

RPD = Relative Percent Difference

 $= [(BS - BSD) / ((BS + BSD) / 2] \times 100$ 

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### DATA QUALIFIER FLAGS

Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation ND: limit, corrected for sample dilution. The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. J: The identification of this analyte was confirmed by GC/MS. C: This analyte was also detected in the associated method blank. The reported sample results have been adjusted for moisture, B1: final exract volume, and/or dilutions performed during extract preparation. The analyte concentration was evaluated prior to sample preparation adjustments, and was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank). This analyte was also detected in the associated method blank. However, the analyte concentration in the sample was B2: determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). E: The concentration of this analyte exceeded the instrument calibration range. The reported result for this analyte is calculated based on a secondary dilution factor. D: This TIC is a suspected aldol-condensation product. A: M: Ouantitation Limits are elevated due to matrix interferences. The calibration quality control criteria for this compound were not met. The reported concentration should be considered an S: estimated quantity. Contaminant does not appear to be "typical" product. Elution pattern suggests it may be \_\_\_\_ X1: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. X2: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended. X3: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous. X4: RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit. X4a: X5: Matrix spike was diluted out during analysis. Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results. X6: Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data. X7: RPD value for MS/MSD outside QC limits due to high contaminant levels. X7a: X8: Surrogate was diluted out during analysis.

X9:

X10:

Surrogate recovery outside QC limits due to matrix composition.

Surrogate recovery outside QC limits due to high contaminant levels.

# BURLINGTO

210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173 CHAIN-OF, CUSTODY RECORD

c.o.c. SERIAL NO. \_\_\_\_\_\_\_6327

| 618/281-7173 /<br>618/281-5120 FAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| PROJECT NAME PIER 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRESER-<br>VATIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1            |
| PROJECT NUMBER 624878 MAJOR TASK 7306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1            |
| SAMPLERS L. LAROSA, B WOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | REMARKS (CHEMICAL ANALYSIS REQUEST)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T. C.        |
| LAB DESTINATION SCHOOL ANALYTICAL SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FORM NUMBER IF APPLICABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1:           |
| SAMPLE DATE TIME SAMPLE LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REMARKS (CHEMICAL ANALYSIS REQUEST FORM NUMBER IF APPLICABLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W. J. Line   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v. Jake      |
| 4.7-93/015 V CP-111-0493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| 417-93 1015 V CP-911-0493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5, 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 2 1 1 1 V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 4-2-93 1400 V CP-114-0493<br>4-12-93 1530 V CP-112-10493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5211111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · ·          |
| Trip blank #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| W I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . **         |
| 1 mariante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| REINQUISHED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECEIVED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.45        |
| SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE TIME DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 & GON      |
| Jours Don Ton El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-7-33 1/3/th 5/8/0/2/2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| Malan Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8-93 /04 D Whine 4/8/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1:00P        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O 1 12 1 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :            |
| Mary and a few and the first the fir |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| SIPPING NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LAB NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IN I W       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second of th | 370          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TO Jan       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s | BE-34 (1/92) |

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### TRANSMITTAL MEMORANDUM

DATE: April 26, 1993

TO: Burlington Environmental, Technical Services

PROJECT NAME: Pier 91

PROJECT NUMBER: 624878-7603

Andrew Kiddell

LABORATORY NUMBER: 31234

Enclosed are one original and one copy of the Tier III data deliverables package for Laboratory Work Order Number 31234. Four samples and a trip blank were received for analysis at Sound Analytical Services, Inc., on 4/06/93.

If there are any questions regarding this data package, please do not hesitate to call me at (206) 922-2310.

Sincerely,

ANDREW J. RIDDELL Project Manager

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

April 26, 1993

TO: Burlington Environmental Engineering

PROJECT NUMBER: 624878-7603

PROJECT NAME: Pier 91

LABORATORY WORK ORDER NUMBER: 31234

The samples were taken on 4/05/93 and were received at Sound on 4/06/93. The samples were analyzed for Volatile Organics in accordance with EPA SW-846 Method 8240, Semivolatile Organics in accordance with EPA SW-846 Method 8270, Total Petroleum Hydrocarbons by EPA Method 418.1 modified for soil, and Total Petroleum Fuel Hydrocarbons by EPA Method 8015 modified.

#### VOLATILE ORGANICS

Samples 31234-1 through 31234-5 were analyzed on 4/10/93 and 4/12/93. Methylene chloride and acetone were detected in the method blanks at levels above the IDL. Results reported for these compounds in the associated samples were flagged B to indicate this. All QC parameters were within acceptance limits.

#### SEMIVOLATILE ORGANICS

Samples 31234-1 through 31234-4 were extracted on 4/07/93 and analyzed on 4/07/93 and 4/08/93. No compounds were detected in the method blank above the IDL. All QC parameters were within acceptance limits.

#### TOTAL PETROLEUM FUEL HYDROCARBONS

Samples 31234-1 through 31234-4 were extracted on 4/07/93 and analyzed on 4/11/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits.

#### TOTAL PETROLEUM HYDROCARBONS

Samples 31234-1 through 31234-4 were extracted on 4/07/93 and analyzed on 4/09/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS TO MADE A TRANSPORT OF A MADE A MADE A TRANSPORT OF A MADE A M

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental, Date: April 14, 1993

Technical Services

Report On: Analysis of Water

Lab No.: 31234

Page 1 of 26

IDENTIFICATION:

Samples received on 04-06-93 Project: 624878-7306 Pier 91

ANALYSIS:

Lab Sample No. 31234-1

Client ID: CP105B-0493

Volatile Organics by Method 8240 Date Analyzed: 4-12-93

| Compound                                                                                                                                                                                                    | Concentration ug/L                       | PQL                                                 | Flag |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------|------|
| Compound  Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane | ND N | 10<br>10<br>10<br>10<br>5<br>50<br>5<br>5<br>5<br>5 | Flag |
| 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane             | ND 11 ND ND   | 25<br>5<br>5<br>25<br>5<br>5<br>5<br>5<br>5         |      |

ND - Not Detected

POL - Practical Quantitation Limit

### SOUND ANALYTICAL SERVICES, INC. SHRVICES, I

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 2 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-1

Client ID: CP105B-0493

8240 Continued . . .

| Compound                                                                                                                                                                          | Concentration ug/L                                                | PQL                                                       | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|------|
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>2.3<br>ND<br>2.7<br>ND<br>5.8 | 5<br>5<br>25<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 100      | 88 - 110 | 81 - 117 |
|                                                       | 96       | 86 - 115 | 74 - 121 |
|                                                       | 114      | 76 - 114 | 70 - 121 |

### SOUND ANALYTICAL SERVICES, INC. Services, IN

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 3 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-1

Client ID: CP105B-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-7-93 Date Analyzed: 4-8-93

| Compound                                              | Concentration ug/L | PQL      | Flag |
|-------------------------------------------------------|--------------------|----------|------|
| Phenol                                                | ND                 | 30<br>30 |      |
| bis(2-Chloroethyl) ether                              | ND                 | 30       |      |
| 2-Chlorophenol                                        | ND<br>ND           | 30       |      |
| 1,3-Dichlorobenzene                                   | ND<br>ND           | 30       |      |
| 1,4-Dichlorobenzene                                   | ND<br>ND           | 60       |      |
| Benzyl Alcohol                                        | ND<br>ND           | 30       |      |
| 1,2-Dichlorobenzene                                   | ND<br>ND           | 30       |      |
| 2-Methylphenol                                        | ND                 | 30       |      |
| <pre>bis(2-Chloroisopropyl)ether 4-Methylphenol</pre> | ND<br>ND           | 30       |      |
| N-Nitroso-Di-N-propylamine                            | ND                 | 30       |      |
| Hexachloroethane                                      | ND                 | 30       |      |
| Nitrobenzene                                          | ND                 | 30       |      |
| Isophorone                                            | ND                 | 30       |      |
| 2-Nitrophenol                                         | ND                 | 30       |      |
| 2,4-Dimethylphenol                                    | ND                 | 30       |      |
| Benzoic Acid                                          | ND                 | 150      |      |
| bis(2-Chloroethoxy)methane                            | ND                 | 30       |      |
| 2,4-Dichlorophenol                                    | ND                 | 30       |      |
| 1,2,4-Trichlorobenzene                                | ND                 | 30       |      |
| Naphthalene                                           | ND                 | 30       |      |
| 4-Chloroaniline                                       | ND                 | 60       |      |
| Hexachlorobutadiene                                   | ND                 | 30       |      |
| 4-Chloro-3-methylphenol                               | ND                 | 60       |      |

ND - Not Detected

PQL - Practical Quantitation Limit

### SOUND ANALYTICAL SERVICES, INC. STR. INC.

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 4 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-1

Client ID: CP105B-0493

#### EPA Method 8270 Continued

| Compound                                     | Concentration<br>ug/L | PQL      | Flag |
|----------------------------------------------|-----------------------|----------|------|
| 2-Methylnaphthalene                          | ND                    | 30       |      |
| Hexachlorocyclopentadiene                    | ND                    | 30       |      |
| 2,4,6-Trichlorophenol                        | ND                    | 30<br>30 |      |
| 2,4,5-Trichlorophenol                        | ND                    | 30       |      |
| 2-Chloronaphthalene                          | ND                    | 150      |      |
| 2-Nitroaniline                               | ND                    | 30       |      |
| Dimethyl phthalate                           | ND                    | 30       |      |
| Acenaphthylene                               | ND                    | 30       |      |
| 2,6-Dinitrotoluene                           | ND<br>ND              | 150      |      |
| 3-Nitroaniline                               | ND<br>ND              | 30       |      |
| Acenaphthene                                 | ND<br>ND              | 150      |      |
| 2,4-Dinitrophenol                            | ND<br>ND              | 150      |      |
| 4-Nitrophenol                                | ND<br>ND              | 30       |      |
| Dibenzofuran                                 | ND<br>ND              | 30       |      |
| 2,4-Dinitrotoluene                           | ND<br>ND              | 30       |      |
| Diethylphthalate                             | ND<br>ND              | 30       |      |
| 4-Chlorophenyl phenyl ether                  | ND<br>ND              | 30       |      |
| Fluorene                                     | ND<br>ND              | 150      |      |
| 4-Nitroaniline                               | ND                    | 150      |      |
| 4,6-Dinitro-2-methylphenol                   | ND<br>ND              | 30       |      |
| N-Nitrosodiphenylamine                       | ND                    | 30       |      |
| 4-Bromophenyl phenyl ether Hexachlorobenzene | ND                    | 30       |      |
|                                              | ND<br>ND              | 150      |      |
| Pentachlorophenol                            | ND<br>ND              | 30       |      |
| Phenanthrene                                 | ND<br>ND              | 30       |      |
| Anthracene<br>Di-n-butylphthalate            | ND<br>ND              | 30       |      |

ND - Not Detected PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. SHOWICES, INC.

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 5 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-1

EPA Method 8270 Continued

Client ID: CP105B-0493

30

30

30

30

30

Concentration Flag uq/L POL Compound 30 ND Fluoranthene 30 ND Pyrene 30 ND Butyl benzyl phthalate 60 ND 3,3'-Dichlorobenzidine 30 ND Benzo(a)anthracene 30 ND Chrysene J 30 26 bis(2-ethylhexyl)phthalate 30 ND Di-n-octyl phthalate 30 ND Benzo(b)fluoranthene

ND

ND

ND

ND

ND

ND - Not Detected
PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Benzo(a)pyrene

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 70       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 85       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 77       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 26       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 54       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 94       | 10 - 123 | 19 - 122 |

Continued . . . . .

Burlington Environmental, Technical Project: 624878-7306 Pier 91 Page 6 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-1

Client ID: CP105B-0493

TPH Per EPA Method 418.1 Date Extracted: 4-7-93 Date Analyzed: 4-9-93

Parameters

Concentration, mq/L

POL Flag

Total Petroleum Hydrocarbons

ND

1.0

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 4-7-93

Date Analyzed: 4-11-93

| <u>Parameters</u>                    | Concentration, mg/L | POL  | Flag |
|--------------------------------------|---------------------|------|------|
| Total Petroleum<br>Fuel Hydrocarbons | ND                  | 0.75 |      |

| SURROGATE RECOVERY, % |     |
|-----------------------|-----|
| 1-chlorooctane        | 104 |
| o-terphenyl           | 129 |

ND - Not Detected POL - Practical Quantitation Limit

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 7 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-2

Client ID: CP105A-0493

Volatile Organics by Method 8240 Date Analyzed: 4-10-93

|                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                                                                | -     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------|-------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                          | Concentration ug/L                                     | PQL                                                                                            | Flag  |
| Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane | ND ND ND ND 1.3 ND | 10<br>10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | B1, J |

ND - Not Detected PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. ANALYTICAL SERVICES, INC.

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 8 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-2

Client ID: CP105A-0493

8240 Continued . .

| Compound                                                                                                                                                                          | oncentration<br>ug/L                     | PQL |                                       | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----|---------------------------------------|------|
| Compound                                                                                                                                                                          |                                          |     |                                       |      |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND N |     | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |      |

ND - Not Detected PQL - Practical Quantitation Limit

| Surrogate Compound                                    | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
|                                                       | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 100      | 88 - 110 | 81 - 117 |
|                                                       | 98       | 86 - 115 | 74 - 121 |
|                                                       | 110      | 76 - 114 | 70 - 121 |

# SOUND ANALYTICAL SERVICES, ANC. ERVICES, INC.

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 9 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-2

Client ID: CP105A-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-7-93 Date Analyzed: 4-7-93

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                           | Concentration<br>ug/L<br>ND              | PQL                                                                | Flag |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                       | 1                                                                  |      |
| Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol | ND N | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 |      |

ND - Not Detected POL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. STANDARD

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 10 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-2

Client ID: CP105A-0493

EPA Method 8270 Continued

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| 2-Methylnaphthalene         | ND                 | 9.6 |      |
| Hexachlorocyclopentadiene   | ND                 | 9.6 |      |
| 2,4,6-Trichlorophenol       | ND                 | 9.6 |      |
| 2,4,5-Trichlorophenol       | ND                 | 9.6 |      |
| 2-Chloronaphthalene         | ND                 | 9.6 |      |
| 2-Nitroaniline              | ND                 | 48  |      |
| Dimethyl phthalate          | ND                 | 9.6 |      |
| Acenaphthylene              | ND                 | 9.6 |      |
| 2,6-Dinitrotoluene          | ND                 | 9.6 |      |
| 3-Nitroaniline              | ND                 | 48  |      |
| Acenaphthene                | ND                 | 9.6 |      |
| 2,4-Dinitrophenol           | ND                 | 48  |      |
| 4-Nitrophenol               | ND                 | 48  |      |
| Dibenzofuran                | ND                 | 9.6 |      |
| 2,4-Dinitrotoluene          | ND                 | 9.6 |      |
| Diethylphthalate            | ND                 | 9.6 |      |
| 4-Chlorophenyl phenyl ether | ND                 | 9.6 |      |
| Fluorene                    | ND                 | 9.6 |      |
| 4-Nitroaniline              | ND                 | 48  |      |
| 4,6-Dinitro-2-methylphenol  | ND                 | 48  |      |
| N-Nitrosodiphenylamine      | ND                 | 9.6 |      |
| 4-Bromophenyl phenyl ether  | ND                 | 9.6 |      |
| Hexachlorobenzene           | ND                 | 9.6 |      |
| Pentachlorophenol           | ND                 | 48  |      |
| Phenanthrene                | ND                 | 9.6 |      |
| Anthracene                  | ND                 | 9.6 |      |
| Di-n-butylphthalate         | 9.1                | 9.6 | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 11 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-2

EPA Method 8270 Continued

Client ID: CP105A-0493

Compound

Concentration

ug/L

PQL

Flag

Fluoranthene

Pyrene

Pyrene

Butyl benzyl phthalate

ND

9.6

ND

9.6

ND

9.6

ND

9.6

ND

19

ND 19 3,3'-Dichlorobenzidine 9.6 ND Benzo(a)anthracene 9.6 ND Chrysene J 9.6 2.8 bis(2-ethylhexyl)phthalate 9.6 ND Di-n-octyl phthalate 9.6 Benzo(b)fluoranthene ND 9.6 Benzo(k)fluoranthene ND 9.6 ND Benzo(a)pyrene 9.6 ND Indeno(1,2,3-cd)pyrene 9.6 ND Dibenz(a,h)anthracene 9.6 ND Benzo(q,h,i)perylene

ND - Not Detected PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 73       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 65       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 67       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 32       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 49       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 74       | 10 - 123 | 19 - 122 |

Continued . . . . .

# SOUND ANALYTICAL SERVICES, INC. SERVICES, 1

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 12 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-2

Client ID: CP105A-0493

TPH Per EPA Method 418.1 Date Extracted: 4-7-93 Date Analyzed: 4-9-93

Parameters Concentration, mg/L PQL Flag

Total Petroleum
Hydrocarbons 1.3 1.0

TPH Per EPA SW-846 Modified Method 8015
Date Extracted: 4-7-93
Date Analyzed: 4-11-93

| <u>Parameters</u>                                | Concentration, | mg/L       | POL  | Flag |
|--------------------------------------------------|----------------|------------|------|------|
| Total Petroleum<br>Fuel Hydrocarbons             |                | ND         | 0.75 |      |
|                                                  |                |            |      |      |
| SURROGATE RECOVERY, % 1-chlorooctane o-terphenyl | *              | 100<br>126 |      |      |

ND - Not Detected PQL - Practical Quantitation Limit

Continued . . . . .

### SOUND ANALYTICAL SERVICES, INC. ERVICES, INC.

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 13 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-3

Client ID: CP104B-0493

Volatile Organics by Method 8240 Date Analyzed: 4-12-93

| Compound                   | Concentration ug/L | PQL   | Flag |
|----------------------------|--------------------|-------|------|
| Compound                   | ид/ п              | 1 Q L | 1149 |
| Chloromethane              | ND                 | 10    |      |
| Bromomethane               | ND                 | 10    |      |
| Vinyl Chloride             | ND                 | 10    |      |
| Chloroethane               | ND                 | 10    |      |
| Methylene Chloride         | ND                 | 5     |      |
| Acetone                    | ND                 | 50    |      |
| Carbon Disulfide           | ND                 | 5     |      |
| 1,1-Dichloroethene         | ND                 | 5     | _    |
| 1,1-Dichloroethane         | 1.9                | 5     | J    |
| 1,2-Dichloroethene (Total) | ND                 | 5     |      |
| Chloroform                 | ND                 | 5     |      |
| 1,2-Dichloroethane         | ND                 | 5     |      |
| 2-Butanone                 | ND                 | 25    | 1    |
| 1,1,1-Trichloroethane      | ND                 | 5     |      |
| Carbon Tetrachloride       | ND                 | 5     |      |
| Vinyl Acetate              | ND                 | 25    |      |
| Bromodichloromethane       | ND                 | 5     |      |
| 1,2-Dichloropropane        | ND                 | 5     |      |
| Cis-1,3-Dichloropropene    | ND                 | 5     |      |
| Trichloroethene            | 12                 | 5     |      |
| Dibromochloromethane       | ND                 | 5     |      |
| 1,1,2-Trichloroethane      | ND                 | 5     |      |

ND - Not Detected PQL - Practical Quantitation Limit

### SOUND ANALYTICAL SERVICES, INCSERVICES, INC

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 14 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-3

8240 Continued . .

Client ID: CP104B-0493

Compound Ug/L PQL Flag

Benzene ND 5
Trans-1,3-Dichloropropene ND 5
Bromoform ND 5
ND 5
ND 5

25 ND 4-Methyl-2-Pentanone ND 5 2-Hexanone 5 ND Tetrachloroethene 5 ND 1,1,2,2-Tetrachloroethane 5 2.3 Toluene 5 ND Chlorobenzene 5 J 2.8 Ethyl Benzene 5 ND Styrene 5 J 4.9 Total Xylenes

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 104      | 88 - 110 | 81 - 117 |
|                                                       | 96       | 86 - 115 | 74 - 121 |
|                                                       | 110      | 76 - 114 | 70 - 121 |

### SOUND ANALYTICAL SERVICES, INC. SERVICES, IN

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 15 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-3

Client ID: CP104B-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-7-93 Date Analyzed: 4-8-93

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                           | Concentration ug/L                       | PQL                                                                             | Flag |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|------|
| Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol | ND N | 28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>2 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                 | -    |

ND - Not Detected

PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INCS BAVE US, IN

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 16 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-3

Client ID: CP104B-0493

EPA Method 8270 Continued

|                             |                    |     | -    |
|-----------------------------|--------------------|-----|------|
| Compound                    | Concentration ug/L | PQL | Flag |
| 2-Methylnaphthalene         | ND                 | 28  |      |
| Hexachlorocyclopentadiene   | ND                 | 28  |      |
| 2,4,6-Trichlorophenol       | ND                 | 28  |      |
| 2,4,5-Trichlorophenol       | ND                 | 28  |      |
| 2-Chloronaphthalene         | ND                 | 28  |      |
| 2-Nitroaniline              | ND                 | 140 |      |
| Dimethyl phthalate          | ND                 | 28  |      |
| Acenaphthylene              | ND                 | 28  |      |
| 2,6-Dinitrotoluene          | ND                 | 28  |      |
| 3-Nitroaniline              | ND                 | 140 |      |
| Acenaphthene                | ND                 | 28  |      |
| 2,4-Dinitrophenol           | ND                 | 140 |      |
| 4-Nitrophenol               | ND                 | 140 |      |
| Dibenzofuran                | ND                 | 28  |      |
| 2,4-Dinitrotoluene          | ND                 | 28  |      |
| Diethylphthalate            | ND                 | 28  |      |
| 4-Chlorophenyl phenyl ether | ND                 | 28  |      |
| Fluorene                    | ND                 | 28  |      |
| 4-Nitroaniline              | ND                 | 140 |      |
| 4,6-Dinitro-2-methylphenol  | ND                 | 140 |      |
| N-Nitrosodiphenylamine      | ND                 | 28  |      |
| 4-Bromophenyl phenyl ether  | ND                 | 28  |      |
| Hexachlorobenzene           | ND                 | 28  |      |
| Pentachlorophenol           | ND                 | 140 |      |
| Phenanthrene                | ND                 | 28  |      |
| Anthracene                  | ND                 | 28  |      |
| Di-n-butylphthalate         | ND                 | 28  |      |
| 4 4                         |                    | 1   |      |

ND - Not Detected

POL - Practical Quantitation Limit

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 17 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-3

Client ID: CP104B-0493

EPA Method 8270 Continued Concentration Flag ug/L PQL Compound 28 ND Fluoranthene 28 ND Pyrene 28 ND Butyl benzyl phthalate 57 ND 3,3'-Dichlorobenzidine 28 ND Benzo(a)anthracene 28 Chrysene ND 28 46 bis(2-ethylhexyl)phthalate J 28 4.3 Di-n-octyl phthalate 28 ND Benzo(b) fluoranthene 28 ND Benzo(k)fluoranthene 28 ND Benzo(a)pyrene 28 ND Indeno(1,2,3-cd)pyrene 28

ND

ND

ND - Not Detected

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

POL - Practical Quantitation Limit

Comi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 80       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 93       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 85       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 27       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 49       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 100      | 10 - 123 | 19 - 122 |

Continued . . . . .

28

### SOUND ANALYTICAL SERVICES, INC. SHAVICES, I

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 18 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-3

Client ID: CP104B-0493

TPH Per EPA Method 418.1 Date Extracted: 4-7-93 Date Analyzed: 4-9-93

Parameters Concentration, mg/L PQL Flag

Total Petroleum
Hydrocarbons ND 1.0

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-7-93 Date Analyzed: 4-11-93

| <u>Parameters</u>                                | Concentration, mg/L | POL  | Flag |
|--------------------------------------------------|---------------------|------|------|
| Total Petroleum<br>Fuel Hydrocarbons             | ND                  | 0.75 |      |
| SURROGATE RECOVERY, % 1-chlorooctane o-terphenyl | 81<br>128           |      |      |

### SOUND ANALYTICAL SERVICES, INC. 1005, INC.

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 19 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-4

Client ID: CP104A-0493

Volatile Organics by Method 8240 Date Analyzed: 4-10-93

| Compound                                                       | Concentration ug/L | PQL                  | Flag   |
|----------------------------------------------------------------|--------------------|----------------------|--------|
| Chloromethane Bromomethane Vinyl Chloride                      | ND<br>ND<br>3.8    | 10<br>10<br>10<br>10 | J<br>J |
| Chloroethane<br>Methylene Chloride<br>Acetone                  | 4.1<br>ND<br>1.4   | 5<br>50              | B1, J  |
| Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane         | ND<br>ND<br>15     | 5<br>5<br>5          |        |
| 1,2-Dichloroethene (Total)<br>Chloroform                       | ND<br>ND<br>ND     | 5<br>5<br>5          |        |
| <pre>1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane</pre> | ND<br>ND           | 25<br>5              |        |
| Carbon Tetrachloride Vinyl Acetate Bromodichloromethane        | ND<br>ND<br>ND     | 5<br>25<br>5         |        |
| 1,2-Dichloropropane<br>Cis-1,3-Dichloropropene                 | ND<br>ND           | 5<br>5               |        |
| Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane     | 2.5<br>ND<br>ND    | 5<br>5<br>5          | J      |

ND - Not Detected PQL - Practical Quantitation Limit

### SOUND ANALYTICAL SERVICES, INC. PRATICIES, INC.

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 20 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-4

Client ID: CP104A-0493

8240 Continued . .

| 6240 Concinced                                                                                                                                                                    | A                                                                |                                       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|------|
| Compound                                                                                                                                                                          | Concentration ug/L                                               | PQL                                   | Flag |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | 1.1<br>ND<br>ND<br>ND<br>ND<br>ND<br>10<br>ND<br>4.2<br>ND<br>20 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | J    |
|                                                                                                                                                                                   |                                                                  |                                       |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 95       | 88 - 110 | 81 - 117 |
|                                                       | 99       | 86 - 115 | 74 - 121 |
|                                                       | 109      | 76 - 114 | 70 - 121 |

# SOUND ANALYTICAL SERVICES, INC. PRVICES, INC.

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 21 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-4

Client ID: CP104A-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-7-93
Date Analyzed: 4-8-93

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                   | Concentration ug/L                       | PQL                                                                | Flag |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|------|
| Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene | ND N | 9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8 | J    |
| 4-Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                       | 20                                                                 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. SERVICES, IN

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 22 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-4

Client ID: CP104A-0493

EPA Method 8270 Continued

| Compound                                             | Concentration ug/L | PQL        | Flag |
|------------------------------------------------------|--------------------|------------|------|
| 2-Methylnaphthalene<br>Hexachlorocyclopentadiene     | 3.9<br>ND          | 9.8        | J    |
| 2,4,6-Trichlorophenol                                | ND                 | 9.8<br>9.8 |      |
| 2,4,5-Trichlorophenol                                | ND<br>ND           | 9.8        |      |
| 2-Chloronaphthalene                                  | ND<br>ND           | 49         |      |
| 2-Nitroaniline                                       | ND                 | 9.8        |      |
| Dimethyl phthalate Acenaphthylene                    | ND                 | 9.8        |      |
| 2,6-Dinitrotoluene                                   | ND                 | 9.8        |      |
| 3-Nitroaniline                                       | ND                 | 49         |      |
| Acenaphthene                                         | 42                 | 9.8        |      |
| 2,4-Dinitrophenol                                    | ND                 | 49         |      |
| 4-Nitrophenol                                        | ND ·               | 49         | _    |
| Dibenzofuran                                         | 4.8                | 9.8        | J    |
| 2,4-Dinitrotoluene                                   | ND                 | 9.8        |      |
| Diethylphthalate                                     | ND                 | 9.8        |      |
| 4-Chlorophenyl phenyl ether                          | ND                 | 9.8<br>9.8 |      |
| Fluorene                                             | 27                 | 49         |      |
| 4-Nitroaniline                                       | ND<br>ND           | 49         |      |
| 4,6-Dinitro-2-methylphenol                           | ND<br>ND           | 9.8        |      |
| N-Nitrosodiphenylamine<br>4-Bromophenyl phenyl ether | ND                 | 9.8        |      |
| Hexachlorobenzene                                    | ND                 | 9.8        |      |
| Pentachlorophenol                                    | ND                 | 49         |      |
| Phenanthrene                                         | 4.0                | 9.8        | J    |
| Anthracene                                           | 2.4                | 9.8        | J    |
| Di-n-butylphthalate                                  | 7.7                | 9.8        | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

### SOUND ANALYTICAL SERVICES, INC. SHOWICHS, INC.

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 23 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-4

EPA Method 8270 Continued

Client ID: CP104A-0493

9.8

9.8

9.8

Concentration PQL Flag ug/L Compound 9.8 J 5.7 Fluoranthene J 2.7 9.8 Pyrene 9.8 Butyl benzyl phthalate ND 20 ND 3,3'-Dichlorobenzidine 9.8 ND Benzo(a)anthracene 9.8 ND Chrysene J 9.8 3.5 bis(2-ethylhexyl)phthalate 9.8 ND Di-n-octyl phthalate 9.8 ND Benzo(b)fluoranthene 9.8 ND Benzo(k)fluoranthene 9.8 ND Benzo(a)pyrene

ND

ND

ND

ND - Not Detected

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate                                                                                                                            | Percent  | Control Limits |          |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------|
| Compound                                                                                                                             | Recovery | Water Soil     |          |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 74       | 35 - 114       | 23 - 120 |
|                                                                                                                                      | 67       | 43 - 116       | 30 - 115 |
|                                                                                                                                      | 69       | 33 - 141       | 18 - 137 |
|                                                                                                                                      | 32       | 10 - 94        | 24 - 113 |
|                                                                                                                                      | 50       | 21 - 100       | 25 - 121 |
|                                                                                                                                      | 29       | 10 - 123       | 19 - 122 |

Continued . . . . .

### SOUND ANALYTICAL SERVICES, INC. ERVICES, INC.

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 24 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-4

Client ID: CP104A-0493

TPH Per EPA Method 418.1 Date Extracted: 4-7-93 Date Analyzed: 4-9-93

| <u>Parameters</u>               | Concentration, mg/L | POL | Flag |
|---------------------------------|---------------------|-----|------|
| Total Petroleum<br>Hydrocarbons | 15                  | 1.0 |      |

TPH Per EPA SW-846 Modified Method 8015
Date Extracted: 4-7-93
Date Analyzed: 4-11-93

Parameters Concentration, mg/L PQL Flag

Total Petroleum
Fuel Hydrocarbons ND 0.75

SURROGATE RECOVERY, %
1-chlorooctane 110
o-terphenyl 136

ND - Not Detected PQL - Practical Quantitation Limit

Continued . . . . .

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 25 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-5

Client ID: TRIP BLANK

Volatile Organics by Method 8240 Date Analyzed: 4-10-93

| Compound                                                                                                                                                                                                                                                                                                                                                                       | Concentration ug/L                                       | PQL                                                                                            | Flag |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------|------|
| Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane | ND ND ND 4.8 0.96 ND | 10<br>10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | ВВ   |

ND - Not Detected POL - Practical Quantitation Limit

Burlington Environmental, Technical

Project: 624878-7306 Pier 91

Page 26 of 26 Lab No. 31234 April 14, 1993

Lab Sample No. 31234-5

Client ID: TRIP BLANK

8240 Continued . .

| 8240 Concinaca                                                                                                                                                                    |                                          |                                                                                             |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|------|
| Compound                                                                                                                                                                          | Concentration ug/L                       | PQL                                                                                         | Flag |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND N | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |      |
|                                                                                                                                                                                   |                                          |                                                                                             |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 98       | 88 - 110 | 81 - 117 |
|                                                       | 97       | 86 - 115 | 74 - 121 |
|                                                       | 108      | 76 - 114 | 70 - 121 |

SOUND ANALYTICAL SERVICES

DENNIS L. BEAN

### SOUND ANALYTICAL SERVICES, INC. ERVICES, INC.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### **OUALITY CONTROL REPORT**

VOLATILE ORGANICS PER EPA METHOD 8240 Page 1 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31234qc5

Units: ug/L Date: April 14, 1993

Blank No: V9714

Date Analyzed: 4-10-93

| METHOD BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                                                                                 |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Result                                                     | PQL                                                                                                             | Flags  |
| Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene | ND ND ND ND 3.8 2.3 ND | PQL<br>10<br>10<br>10<br>10<br>10<br>50<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | J<br>J |

ND - Not Detected

PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. LERVICES, INC.

### QUALITY CONTROL REPORT

### VOLATILE ORGANICS PER EPA METHOD 8240

Page 2 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31234qc5

Date:

April 14, 1993

Blank No: V9714

Date Analyzed: 4-10-93

VOLATILE SURROGATES

| Surrogate                                             | Percent<br>Recovery | Contro   | l Limits<br>Soil |
|-------------------------------------------------------|---------------------|----------|------------------|
| Toluene - d8 Bromofluorobenzene 1,2-Dichloroethane d4 | 99                  | 86 - 115 | 81 - 117         |
|                                                       | 99                  | 76 - 114 | 74 - 121         |
|                                                       | 103                 | 88 - 110 | 70 - 121         |

## SOUND ANALYTICAL SERVICES, INC. SERVICES, INC.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### **OUALITY CONTROL REPORT**

#### VOLATILE ORGANICS PER EPA METHOD 8240 Page 1 of 2

Client: Burlington Environmental, Technical Services

Lab No: 31234qc1

Units: ug/L

Date: April 14, 1993

Blank No: V9759

Date Analyzed: 4-12-93

| METHOD BLANK               |        |             |       |  |  |
|----------------------------|--------|-------------|-------|--|--|
| Compound                   | Result | PQL         | Flags |  |  |
| Chloromethane              | ND     | 10          |       |  |  |
| Bromomethane               | ND     | 10          |       |  |  |
| Vinyl Chloride             | ND     | 10          |       |  |  |
| Chloroethane               | ND     | 10          |       |  |  |
| Methylene Chloride         | 2.9    | 5           | J     |  |  |
| Acetone                    | ND     | 50          |       |  |  |
| Carbon Disulfide           | ND     | 5           |       |  |  |
| 1,1-Dichloroethene         | ND     | 5           |       |  |  |
| 1,1-Dichloroethane         | ND     | 5           |       |  |  |
| 1,2-Dichloroethene (Total) | ND     | 5<br>5<br>5 |       |  |  |
| Chloroform                 | ND     | 5           |       |  |  |
| 1,2-Dichloroethane         | ND     | 5           |       |  |  |
| 2-Butanone                 | ND     | 25          |       |  |  |
| 1,1,1-Trichloroethane      | ND     | 5           |       |  |  |
| Carbon Tetrachloride       | ND     | 5           |       |  |  |
| Vinyl Acetate              | ND     | 25          |       |  |  |
| Bromodichloromethane       | ND     | 5           |       |  |  |
| 1,2-Dichloropropane        | ND     | 5           |       |  |  |
| Cis-1,3-Dichloropropene    | ND     | 5           |       |  |  |
| Trichloroethene            | ND     | 5           |       |  |  |
| Dibromochloromethane       | ND     | 5           |       |  |  |
| 1,1,2-Trichloroethane      | ND     | 5           |       |  |  |
| Benzene                    | ND     | 5<br>5      |       |  |  |
| Trans-1,3-Dichloropropene  | ND     | 5           |       |  |  |
| Bromoform                  | ND     | 5           |       |  |  |
| 4-Methyl-2-Pentanone       | ND     | 25          |       |  |  |
| 2-Hexanone                 | ND     | 5           |       |  |  |
| Tetrachloroethene          | ND     | 5           |       |  |  |
| 1,1,2,2-Tetrachloroethane  | ND     | 5           |       |  |  |
| Toluene                    | ND     | 5           |       |  |  |
| Chlorobenzene              | ND     | 5           |       |  |  |
| Ethyl Benzene              | ND     | 5           |       |  |  |
| Styrene                    | ND     | 5           |       |  |  |
| Total Xylenes              | ND     | 5           | G.    |  |  |

ND - Not Detected

PQL - Practical Quantitation Limit

### QUALITY CONTROL REPORT

#### VOLATILE ORGANICS PER EPA METHOD 8240

Page 2 of 2

Client: Burlington Environmental, Technical Services

Lab No: 31234qc1

April 14, 1993

Blank No: V9759

Date Analyzed: 4-12-93

| Surrogate                                             | Percent<br>Recovery |          | l Limits<br>Soil |
|-------------------------------------------------------|---------------------|----------|------------------|
| Toluene - d8 Bromofluorobenzene 1,2-Dichloroethane d4 | 101                 | 86 - 115 | 81 - 117         |
|                                                       | 90                  | 76 - 114 | 74 - 121         |
|                                                       | 113                 | 88 - 110 | 70 - 121         |

VOLATILE SURROGATES

## SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### QUALITY CONTROL REPORT

#### VOLATILE ORGANICS - METHOD 8240

Client:

Burlington Environmental, Technical Services

Lab No:

31234qc2

Units:

ug/L

Date:

April 14, 1993

#### BLANK SPIKE RECOVERY

| Date Analyzed: 4-10-93 |                                  |                        |     |                                          |                        |     |     |      |
|------------------------|----------------------------------|------------------------|-----|------------------------------------------|------------------------|-----|-----|------|
| Parameter              | Blank<br>Spike<br>Result<br>(BS) | Spike<br>Added<br>(SA) | %R  | Blank<br>Spike<br>Dup<br>Result<br>(BSD) | Spike<br>Added<br>(SA) | %R  | RPD | Flag |
| 1,1-DCE                | 42                               | 50                     | 84  | 42                                       | 50                     | 84  | 0.0 |      |
| TCE                    | 51                               | 50                     | 102 | 51                                       | 50                     | 104 | 0.0 |      |
| Chloro-<br>benzene     | 50                               | 50                     | 100 | 49                                       | 50                     | 98  | 2.0 |      |
| Toluene                | 51                               | 50                     | 102 | 50                                       | 50                     | 100 | 2.0 |      |
| Benzene                | 49                               | 50                     | 98  | 48                                       | 50                     | 96  | 2.1 |      |

%R = Percent Recovery
= [(BS / SA] x 100

RPD = Relative Percent Difference

 $= [(BS - BSD) / ((BS + BSD) / 2] \times 100$ 

ND - Not Detected

| ADVISORY LIMITS    | RPD | <pre>% RECOVERY</pre> |
|--------------------|-----|-----------------------|
| 1,1-Dichloroethene | 22  | 59 - 172              |
| Trichloroethene    | 24  | 62 - 137              |
| Chlorobenzene      | 21  | 60 - 133              |
| Toluene            | 21  | 59 - 139              |
| Benzene            | 21  | 66 - 142              |

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### QUALITY CONTROL REPORT

#### VOLATILE ORGANICS - METHOD 8240

Client:

Burlington Environmental, Technical Services

Lab No:

31234qc3

Units:

ug/L

Date Analyzed: 4-12-93

Date:

April 14, 1993

#### BLANK SPIKE RECOVERY

Blank Spike Blank Spike Spike Dup Spike Added Result Added Result Flag &R RPD (SA) (BSD) (BS) (SA) &R Parameter 86 0.0 50 86 43 43 50 1,1-DCE 50 102 3.8 51 53 50 106 TCE Chloro-102 3.8 50 106 51 50 benzene 53

108

104

52

52

3.8

0.0

104

104

50

50

%R = Percent Recovery

 $= [(BS / SA] \times 100$ 

RPD = Relative Percent Difference

54

52

 $= [(BS - BSD) / ((BS + BSD) / 2] \times 100$ 

50

50

ND - Not Detected

Toluene

Benzene

| ADVISORY LIMITS    | RPD | % RECOVERY |
|--------------------|-----|------------|
| 1,1-Dichloroethene | 22  | 59 - 172   |
| Trichloroethene    | 24  | 62 - 137   |
| Chlorobenzene      | 21  | 60 - 133   |
| Toluene            | 21  | 59 - 139   |
| Benzene            | 21  | 66 - 142   |

## SOUND ANALYTICAL SERVICES, INC. AND SOUND ANALYTICAL SERVICES, INC.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### QUALITY CONTROL REPORT

TPH by Method 418.1

Client:

Burlington Environmental, Technical Services

Lab No:

31234qc4

Matrix:

Water

Units:

mg/L

Date:

April 14, 1993

#### METHOD BLANK

| Parameter                       | Result | PQL |
|---------------------------------|--------|-----|
| Total Petroleum<br>Hydrocarbons | ND     | 1.0 |

ND - Not Detected PQL - Practical Quantitation Limit

#### BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY

| Parameter | Sample<br>Result<br>(SR) | Spiked<br>Sample<br>Result<br>(BS) | Spike<br>Added<br>(SA) | BS<br>%R | Spike<br>Dup<br>Result<br>(BSD) | BSD<br>%R | RPD | Flag |
|-----------|--------------------------|------------------------------------|------------------------|----------|---------------------------------|-----------|-----|------|
| ТРН       | ND                       | 91                                 | 100                    | 91       | 87                              | 87        | 4.5 |      |

%R = Percent Recovery
= [(BS - SR) / SA] x 100

## SOUND ANALYTICAL SERVICES, INC. SERVICES, J

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS FROM A PROPERTY ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 1 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31234qc6

Matrix:

Water

Units:

mq/L

Date:

April 14, 1993

#### DUPLICATE

| Dup. No. 31234-1                               |               |                  |     |      |       |
|------------------------------------------------|---------------|------------------|-----|------|-------|
| Parameter                                      | Sample<br>(S) | Duplicate<br>(D) | RPD | PQL  | Flags |
| Total Petroleum<br>Fuel Hydrocarbons           | ND            | ND               | 0.0 | 0.75 |       |
| SURROGATE RECOVERY% 1-chlorooctane o-terphenyl | 104<br>129    | 87<br>118        |     |      |       |

RPD = relative percent difference =  $[(S - D) / ((S + D) / 2)] \times 100$ 

#### MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

| MS/MSD No. 005R0201.D                |                          |                                    |                        |    |                                 |     |
|--------------------------------------|--------------------------|------------------------------------|------------------------|----|---------------------------------|-----|
| Parameter                            | Sample<br>Result<br>(SR) | Spiked<br>Sample<br>Result<br>(MS) | Spike<br>Added<br>(SA) | %R | Spike<br>Dup<br>Result<br>(MSD) | RPD |
| Total Petroleum<br>Fuel Hydrocarbons | ND                       | 379                                | 402                    | 94 | 394                             | 3.9 |

#### QUALITY CONTROL REPORT

#### Total Petroleum Fuel Hydrocarbons by Method 8015

Page 2 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31234qc6

Units:

mg/L

Date:

April 14, 1993

#### BLANK SPIKE RECOVERY

| BS No. 004R0201.d                    |             |                    |    |
|--------------------------------------|-------------|--------------------|----|
| Parameter                            | Spike Added | Spike<br>Recovered | %R |
| Total Petroleum<br>Fuel Hydrocarbons | 402         | 281                | 70 |

%R = Percent Recovery
= [(BS - SR) / SA] x 100

#### METHOD BLANK

| Blank No. 003R0201.D                           |           |      |
|------------------------------------------------|-----------|------|
| Parameter                                      | Result    | PQL  |
| Total Petroleum<br>Fuel Hydrocarbons           | ND        | 0.75 |
| SURROGATE RECOVERY% 1-chlorooctane o-terphenyl | 72<br>136 |      |

ND - Not Detected PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. 1841 CORNEL AND ANALYTICAL SERVICES, INC

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### WATER MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name:

Burlington Environmental, Technical Services

Lab No:

31234qc7

Date:

April 14, 1993

|                           | SEMI         | VOLATII          | LE ORGAI   | VICS     |             |          |     |       |
|---------------------------|--------------|------------------|------------|----------|-------------|----------|-----|-------|
| COMPOUND                  | SPIKE (ug/L) | SAMPLE<br>RESULT | CONC<br>MS | %<br>REC | CONC<br>MSD | %<br>REC | RPD | FLAGS |
| Phenol                    | 100          | ND               | 34         | 34       | 39          | 39       | 14  |       |
| 2-Chlorophenol            | 100          | ND               | 67         | 67       | 58          | 58       | 14  |       |
| 1,4-Dichlorobenzene       | 100          | ND               | 53         | 53       | 49          | 49       | 7.8 |       |
| N-nitrosodi-n-Propylamine | 100          | ND               | 76         | 76       | 66          | 66       | 14  |       |
| 1,2,4-Trichlorobenzene    | 100          | ND               | 57         | 57       | 54          | 54       | 5.4 |       |
| 4-Chloro-3-Methylphenol   | 100          | ND               | 77         | 77       | 68          | 68       | 12  |       |
| Acenaphthene              | 100          | ND               | 58         | 58       | 54          | 54       | 8.1 |       |
| 4-Nitrophenol             | 100          | ND               | 20         | 20       | 16          | 16       | 22  |       |
| 2,4 Dinitrotoluene        | 100          | ND               | 68         | 68       | 60          | 60       | 13  |       |
| Pentachlorophenol         | 100          | ND               | 55         | 55       | 47          | 47       | 16  |       |
| Pyrene                    | 100          | ND               | 84         | 84       | 74          | 74       | 13  |       |

RPD = Relative Percent Difference

<sup>%</sup> REC = Percent Recovery

| ADVISORY LIMITS:        | RPD | <pre>% RECOVERY</pre> |  |
|-------------------------|-----|-----------------------|--|
| Phenol                  | 42  | 12 - 89               |  |
| 2-Chlorophenol          | 40  | 27 - 123              |  |
| 1,4-Dichlorobenzene     | 28  | 36 - 97               |  |
| N-nitrosodi-n-          |     |                       |  |
| Propylamine             | 38  | 41 - 116              |  |
| 1,2,4-Trichlorobenzene  | 28  | 39 - 98               |  |
| 4-Chloro-3-Methylphenol | 42  | 23 - 97               |  |
| Acenaphthene            | 31  | 46 - 118              |  |
| 4-Nitrophenol           | 50  | 10 - 80               |  |
| 2,4 Dinitrotoluene      | 38  | 24 - 96               |  |
| Pentachlorophenol       | 50  | 9 - 103               |  |
| Pyrene                  | 31  | 26 - 127              |  |
| - 1                     |     |                       |  |

### SOUND ANALYTICAL SERVICES, Inc. SERVICES, I

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 1 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

31234qc8

Units:

ug/L

Date:

April 14, 1993

Blank No: SBLK84-S8379

METHOD BLANK

PQL - Practical Quantitation Limit

ND - Not Detected

#### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

#### Page 2 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

31234qc8

Units:

ug/L

Date:

April 14, 1993

Blank No: SBLK84-S8379

| METHOJ                      | D BLANK |     |       |
|-----------------------------|---------|-----|-------|
| Compound                    | Result  | PQL | Flags |
| 3-Nitroaniline              | ND      | 50  |       |
| Acenaphthene                | ND      | 10  |       |
| 2,4-Dinitrophenol           | ND      | 50  |       |
| 4-Nitrophenol               | ND      | 50  |       |
| Dibenzofuran                | ND      | 10  |       |
| 2,4-Dinitrotoluene          | ND      | 10  |       |
| 2,6-Dinitrotoluene          | ND      | 10  |       |
| Diethylphthalate            | ND      | 10  |       |
| 4-Chlorophenyl phenyl ether | ND      | 10  |       |
| Fluorene                    | ND      | 10  |       |
| 4-Nitroaniline              | ND      | 50  |       |
| 4,6-Dinitro-2-methylphenol  | ND      | 50  |       |
| N-Nitrosodiphenylamine      | ND      | 10  |       |
| 4-Bromophenyl phenyl ether  | ND      | 10  |       |
| Hexachlorobenzene           | ND      | 10  |       |
| Pentachlorophenol           | ND      | 50  |       |
| Phenanthrene                | ND      | 10  |       |
| Anthracene                  | ND      | 10  |       |
| Di-n-butylphthalate         | ND      | 10  |       |
| Fluoranthene                | ND      | 10  |       |
| Pyrene                      | ND      | 10  |       |
| Butyl benzyl phthalate      | ND      | 10  |       |
| 3,3'-Dichlorobenzidine      | ND      | 20  |       |
| Benzo(a)anthracene          | ND      | 10  |       |
| bis(2-ethylhexyl)phthalate  | ND      | 10  |       |
| Chrysene                    | ND      | 10  |       |
| Di-n-octyl phthalate        | ND      | 10  |       |
| Benzo(b)fluoranthene        | ND      | 10  |       |
| Benzo(k)fluoranthene        | ND      | 10  |       |
| Benzo(a)pyrene              | ND      | 10  |       |
| Indeno(1,2,3-cd)pyrene      | ND      | 10  |       |
| Dibenz(a,h)anthracene       | ND      | 10  |       |
| Benzo(g,h,i)perylene        | ND      | 10  |       |
| DeDo (9/11/1/Perline        | -,-     |     |       |

PQL - Practical Quantitation Limit

ND - Not Detected

## SOUND ANALYTICAL SERVICES, INC. HEVICES, INC.

#### QUALITY CONTROL REPORT

#### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 3 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

31234qc8

Blank No: SBLK84-S8379

April 14, 1993

|                   | SEMIVO   | LATILE SURROGA' | l'ES     |
|-------------------|----------|-----------------|----------|
| Surrogate         | Percent  | Control         | Limits   |
|                   | Recovery | Water           | Soil     |
| Nitrobenzene - d5 | 80       | 35 - 114        | 23 - 120 |
| 2-Fluorobiphenyl  | 61       | 43 - 116        | 30 - 115 |
| p-Terphenyl-d14   | 73       | 33 - 141        | 18 - 137 |
| Phenol-d6         | 35       | 10 - 94         | 24 - 113 |
| 2-Fluorophenol    | 53       | 21 - 100        | 25 - 121 |
| 2,4,6-TBP         | 71       | 10 - 123        | 19 - 122 |

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### DATA QUALIFIER FLAGS

Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation ND: limit, corrected for sample dilution. The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. J: C: The identification of this analyte was confirmed by GC/MS. This analyte was also detected in the associated method blank. The reported sample results have been adjusted for moisture, B1: final exract volume, and/or dilutions performed during extract preparation. The analyte concentration was evaluated prior to sample preparation adjustments, and was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank). This analyte was also detected in the associated method blank. However, the analyte concentration in the sample was B2: determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). The concentration of this analyte exceeded the instrument calibration range. E: The reported result for this analyte is calculated based on a secondary dilution factor. D: A: This TIC is a suspected aldol-condensation product. Ouantitation Limits are elevated due to matrix interferences. M: The calibration quality control criteria for this compound were not met. The reported concentration should be considered an S: estimated quantity. Contaminant does not appear to be "typical" product. Elution pattern suggests it may be X1: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. X2: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended. X3: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous. X4: RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit. X4a: X5: Matrix spike was diluted out during analysis. X6: Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results. Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data. X7: X7a: RPD value for MS/MSD outside QC limits due to high contaminant levels. X8: Surrogate was diluted out during analysis. X9: Surrogate recovery outside QC limits due to matrix composition.

Surrogate recovery outside QC limits due to high contaminant levels.

X10:

CHAIN OF CUSTODY



210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173

### CHAIN-OF-CUSTODY RECORD

C.O.C. SERIAL NO. 6319

| ٨  | 818/281-5120  | FAX      |       |       |       |            |         | 1        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|----|---------------|----------|-------|-------|-------|------------|---------|----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------------------------------------|------|-----|-----|------|---------|----------|-----------|-------------------|-----------------------------------------|
|    | PROJECT       | NAME P   | ER 9  | J     |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /    | 7    | 7                                      | 7    | /   | 7   | /    |         | PRESER-  |           |                   |                                         |
|    | PROJECT       | NUMBER ( | 0248  | 78    |       | MAJOR TASK | 7603    | 3        | (0                   | TANK OF THE PERSON OF THE PERS | \&/  | 0    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |      | 1/  |     |      | / V     | ATIVES / | <b>/</b>  |                   |                                         |
|    | SAMPLER       | is L.CA  | ROSA. | K.6   | UAL   | teR, DE    |         |          | ER                   | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7/\  | 76   | 1) 9                                   | 0/ 3 | 5   |     |      | / /     | 5        | 9         | REMARKS           |                                         |
|    | LAB DEST      | INATION  | SOUNG | A     | UA    | yneal      |         |          | TAIN                 | 1 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |      | b Kr                                   |      | ,   | / / | / /  | / /3    |          | (CHEMICAL | ANALYSIS REGISTER | DUEST                                   |
|    | SAMPLE<br>NO. | DATE     | TIME  | Sylva | Spage | SAMPLE I   | OCATION |          | NO. OF<br>CONTAINERS | /:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 6 | 2/ E | 1/2                                    | */   |     |     |      | Stem C. | \$ /     | TONWINOW  |                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|    |               | 4-5-93   | 1115  |       | /     | CP105B     | -049    | 3        | 5                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | 1    | 1                                      |      |     |     |      | /       |          |           |                   |                                         |
|    |               | 4-5-93   | 1305  |       |       | C.P105A.   |         |          | 5                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | 1    | 1                                      |      |     |     |      | V       |          |           |                   |                                         |
|    | v v           | 4.5-93   | 1500  |       | V     | CP104B.    |         |          | 5                    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i    | 1    | 1                                      |      |     |     | V    |         |          |           |                   |                                         |
|    |               | 45-93    | 1567  |       |       | CP104A     |         |          | 5                    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _/_  |      |                                        |      |     |     | /    | 1       |          |           |                   |                                         |
| W  | Hil           | 4.5.93   |       |       |       | Trip blo   | ink (   | <b>國</b> | 2                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·    |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    |               |          |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    |               |          |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
| 4- | 11. /         |          |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    | 1.            |          |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    |               |          |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    |               |          |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    | 0.59          |          |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    | (3)           |          | ,     |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    |               |          |       |       |       |            |         |          | 1. /                 | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 4.;  |                                        |      |     |     |      |         |          |           |                   |                                         |
|    | RELINQUI      | SHED BY  |       | !     |       | of piles   | 7 1 1 1 |          | *                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | RECE | IVED                                   | BY   |     |     |      |         |          |           |                   |                                         |
|    | 1             | 1        | STG   | NATUP | Æ     | 1          | 1       | ۱' ۲     | DATE                 | TII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ME   |      | -                                      | 6    | ),- |     | SIGI | NATURE  |          |           | DATE              | TIME                                    |
|    | Lan           |          | TKI   | Tu    | Di    | Ø.         | ••      | 4.       | 7-93                 | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00   |      | 1 %                                    | Ira  | lln | ~1  | _ >  | 1       |          |           | 4-6-9             | 3 9:101                                 |
| -  | 219           |          | 1     | Z     |       |            | 11      | 1        | - 2                  | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i,   | A    |                                        | -V   |     | 1   |      |         |          |           | 11/1/1/1          | 11.                                     |
|    | NA            | Keen     | 12    |       | 7     |            | 7       | 16       | 72                   | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10K  | -1   |                                        | V    | 20  | az  | m    |         |          |           | 4/6/9             | 3 1K.10                                 |
|    |               |          | ,     | I.    | *-1   |            |         | 1        | iş                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        | l    |     | 0   |      |         |          |           |                   |                                         |
|    |               | , 9      |       |       |       |            |         | 1        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    |               |          |       |       |       |            |         | 1        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    | SHIPPING      | NOTES    |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | LAB  | NOT                                    | ES   |     |     |      |         |          |           |                   |                                         |
|    |               |          |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    |               |          |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   |                                         |
|    |               |          |       |       |       |            |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |                                        |      |     |     |      |         |          |           |                   | BE-34 (1/92)                            |

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### TRANSMITTAL MEMORANDUM

DATE: May 6, 1993

TO: Bi

Burlington Environmental Engineering

PROJECT NAME: Pier 91

PROJECT NUMBER: 624878-7306

andrew Foldell

LABORATORY NUMBER: 31280

Enclosed are one original and one copy of the Tier III data deliverables package for Laboratory Work Order Number 31280. The samples were received for analysis at Sound Analytical Services, Inc., on April 7, 1993.

If there are any questions regarding this data package, please do not hesitate to call me at (206) 922-2310.

Sincerely,

Andrew J. Riddell

Project Manager

## SOUND ANALYTICAL SERVICES, ANG. ERVICES, INC.

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

April 30, 1993

TO: Burlington Environmental Engineering

PROJECT NUMBER: 624878-7306

PROJECT NAME: Pier 91

LABORATORY WORK ORDER NUMBER: 31280

The samples were taken on 4/06/93 and were received at Sound on 4/07/93. The samples were analyzed for Volatile Organics in accordance with EPA SW-846 Method 8240, Semivolatile Organics in accordance with EPA SW-846 Method 8270, Total Petroleum Hydrocarbons by EPA Method 418.1 modified for soil, and Total Petroleum Fuel Hydrocarbons by EPA Method 8015 modified.

#### VOLATILE ORGANICS

Samples 31280-1 through 31280-5 were analyzed on 4/12/93. Methylene chloride and acetone were detected in the method blanks at levels above the IDL. Results reported for these compounds in the associated samples were flagged B to indicate this. All QC parameters were within acceptance limits.

#### SEMIVOLATILE ORGANICS

Samples 31280-1 through 31280-4 were extracted on 4/07/93 and analyzed on 4/07/93 and 4/08/93. No compounds were detected in the method blank above the IDL. All QC parameters were within acceptance limits.

#### TOTAL PETROLEUM FUEL HYDROCARBONS

Samples 31280-1 through 31280-4 were extracted on 4/12/93 and analyzed on 4/14/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits.

#### TOTAL PETROLEUM HYDROCARBONS

Samples 31280-1 through 31280-4 were extracted and analyzed on 4/09/93. No contamination above the PQL was present in the method blank. All QC parameters were within acceptance limits.

### SOUND ANALYTICAL SERVICES, INC. MINUTED AND ANALYTICAL SERVICES, INC.

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental, Date: April 15, 1993

Technical Services

Report On: Analysis of Water

Lab No.: 31280 Page 1 of 26

IDENTIFICATION:

Samples received on 04-07-93 Project: 624878-7306 Pier 91

#### ANALYSIS:

Lab Sample No. 31280-1

Client ID: CP108B-0493

Volatile Organics by Method 8240 Date Analyzed: 4-12-93

| Compound                                                                                                                                                                                                                                                                                            | Concentration ug/L          | PQL                                      | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------|------|
| Compound  Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,1-Trichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate |                             | PQL  10 10 10 10 5 5 5 5 5 5 5 5 25 5 25 | Flag |
| Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane                                                                                                                                                                         | ND<br>ND<br>ND<br>9.1<br>ND | 5<br>5<br>5<br>5<br>5                    |      |

ND - Not Detected

PQL - Practical Quantitation Limit

## SOUND ANALYTICAL SERVICES, INC. STRUCTS, INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 2 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-1

Client ID: CP108B-0493

8240 Continued . . .

| Compound                                                                                                                                                                          | Concentration ug/L                       | PQL                                                                                              | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|------|
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND S.3 ND S.2 | 5<br>5<br>5<br>2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate Compound                                    | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
|                                                       | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 100      | 88 - 110 | 81 - 117 |
|                                                       | 97       | 86 - 115 | 74 - 121 |
|                                                       | 113      | 76 - 114 | 70 - 121 |

# SOUND ANALYTICAL SERVICES, INCHERVICES, INC

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 3 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-1

Client ID: CP108B-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-9-93 Date Analyzed: 4-12-93

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                           | Concentration ug/L                       | PQL                                                                                                            | Flag |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|------|
| Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol | ND N | 10<br>10<br>10<br>10<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

### SOUND ANALYTICAL SERVICES, INC. HAVICES, INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 4 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-1

Client ID: CP108B-0493

EPA Method 8270 Continued

| Concentration<br>ug/L                   | PQL                                      | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                                      | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | 1000.000                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100000000000000000000000000000000000000 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MACON POST                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| F-0.7                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | V                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      | 100 100                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      | 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      | 51                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND                                      | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | ND N | ND 10 ND 51 ND 10 ND 51 ND 10 ND 51 ND 10 ND 51 ND 51 ND 10 ND 51 ND 10 ND 51 ND 10 ND 10 ND 51 ND 10 ND 51 ND 10 ND 51 ND 10 ND 51 ND 10 ND 10 ND 51 ND 10 |

ND - Not Detected

PQL - Practical Quantitation Limit

## SOUND ANALYTICAL SERVICES, INC. SHEEVICES, IN

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 5 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-1

Client ID: CP108B-0493

EPA Method 8270 Continued

| Compound         Concentration ug/L         PQL         Flag           Fluoranthene         ND         10           Pyrene         ND         10           Butyl benzyl phthalate         ND         10           3,3'-Dichlorobenzidine         ND         20           Benzo(a)anthracene         ND         10           Chrysene         ND         10           bis(2-ethylbexyl)phthalate         23         10 | EPA Method 82/0 Continued                                                                                                                                                                                                              |                                          |                                                          |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|------|
| Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene  ND 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                       | Compound                                                                                                                                                                                                                               |                                          | PQL                                                      | Flag |
| Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene  ND 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                            | Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene | ND N | 10<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 66       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 58       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 54       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 11       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 44       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 82       | 10 - 123 | 19 - 122 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 6 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-1

Client ID: CP108B-0493

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-12-93 Date Analyzed: 4-14-93

<u>Parameter</u> <u>Concentration, mg/L</u> <u>PQL</u> <u>Flag</u>

Total Petroleum
Fuel Hydrocarbons ND 0.75

SURROGATE RECOVERY, % 1-chlorooctane

o-terphenyl

80 102

TPH Per EPA Method 418.1 Date Extracted: 4-9-93

Date Analyzed: 4-9-93

Parameter Concentration, mg/L POL Flag

Total Petroleum
Hydrocarbons ND 1.0

ND - Not Detected PQL - Practical Quantitation Limit

## 

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 7 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-2

Client ID: CP108A-0493

Volatile Organics by Method 8240 Date Analyzed: 4-10-93

|                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                | -              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                          | Concentration ug/L                                      | PQL                                                                                            | Flag           |
| Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane | ND ND ND 1.9 1.1 ND | 10<br>10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | B1, J<br>B1, J |

ND - Not Detected PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INCSERVICES, INC

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 8 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-2

Client ID: CP108A-0493

| 8240 Continued                                                                                                                                                                    |                                                             |                                                                                                  |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------|
| Compound                                                                                                                                                                          | Concentration ug/L                                          | PQL                                                                                              | Flag |
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.83<br>ND<br>1.2<br>ND | 5<br>5<br>5<br>2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | J    |

ND - Not Detected POL - Practical Quantitation Limit

Volatile Surrogates Control Limits Percent Surrogate Soil Water Compound Recovery 81 - 117 88 - 110 Toluene - D8 98 74 - 12199 86 - 115 Bromofluorobenzene 70 - 121 76 - 114 1,2-Dichloroethane-D4 109

### SOUND ANALYTICAL SERVICES, INC. SERVICES,

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 9 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-2

Client ID: CP108A-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-9-93 Date Analyzed: 4-12-93

| Concentration ug/L  ND | PQL 9.9 9.9 9.9 9.9 9.9 9.9 9.9        | Flag                                                   |
|------------------------------------------------------------|----------------------------------------|--------------------------------------------------------|
| ND<br>ND<br>ND<br>ND<br>ND<br>ND                           | 9.9<br>9.9<br>9.9<br>20<br>9.9<br>9.9  |                                                        |
| ND                           | 9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9 |                                                        |
| ND<br>ND<br>ND                                             | 9.9<br>9.9<br>9.9                      |                                                        |
| ND<br>ND<br>ND                                             | 20<br>9.9<br>20                        |                                                        |
|                                                            | ND<br>ND<br>ND<br>ND<br>ND             | ND 50 ND 9.9 |

ND - Not Detected

PQL - Practical Quantitation Limit

### SOUND ANALYTICAL SERVICES, INC. SERVICES, I

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 10 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-2

Client ID: CP108A-0493

EPA Method 8270 Continued

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| 2-Methylnaphthalene         | ND                 | 9.9 |      |
| Hexachlorocyclopentadiene   | ND                 | 9.9 |      |
| 2,4,6-Trichlorophenol       | ND                 | 9.9 |      |
| 2,4,5-Trichlorophenol       | ND                 | 9.9 |      |
| 2-Chloronaphthalene         | ND                 | 9.9 |      |
| 2-Nitroaniline              | ND                 | 50  |      |
| Dimethyl phthalate          | ND                 | 9.9 |      |
| Acenaphthylene              | ND                 | 9.9 |      |
| 2,6-Dinitrotoluene          | ND                 | 9.9 |      |
| 3-Nitroaniline              | ND                 | 50  |      |
| Acenaphthene                | ND                 | 9.9 |      |
| 2,4-Dinitrophenol           | ND                 | 50  | 1    |
| 4-Nitrophenol               | ND                 | 50  |      |
| Dibenzofuran                | ND                 | 9.9 |      |
| 2,4-Dinitrotoluene          | ND                 | 9.9 |      |
| Diethylphthalate            | ND                 | 9.9 |      |
| 4-Chlorophenyl phenyl ether | ND                 | 9.9 |      |
| Fluorene                    | ND                 | 9.9 |      |
| 4-Nitroaniline              | ND                 | 50  |      |
| 4,6-Dinitro-2-methylphenol  | ND                 | 50  |      |
| N-Nitrosodiphenylamine      | ND                 | 9.9 |      |
| 4-Bromophenyl phenyl ether  | ND                 | 9.9 |      |
| Hexachlorobenzene           | ND                 | 9.9 |      |
| Pentachlorophenol           | ND                 | 50  |      |
| Phenanthrene                | ND                 | 9.9 |      |
| Anthracene                  | ND                 | 9.9 |      |
| Di-n-butylphthalate         | 5.8                | 9.9 | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. PROVIDED, INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 11 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-2

Client ID: CP108A-0493

EPA Method 8270 Continued Concentration Flag POL ug/L Compound 9.9 ND Fluoranthene 9.9 ND Pyrene 9.9 ND Butyl benzyl phthalate 20 ND 3,3'-Dichlorobenzidine 9.9 ND Benzo(a)anthracene 9.9 ND Chrysene J 9.9 bis(2-ethylhexyl)phthalate 1.6 9.9 ND Di-n-octyl phthalate 9.9 ND Benzo(b) fluoranthene 9.9 ND Benzo(k)fluoranthene 9.9 ND Benzo(a)pyrene 9.9 ND Indeno(1,2,3-cd)pyrene 9.9 Dibenz(a,h)anthracene ND9.9 ND Benzo(g,h,i)perylene

ND - Not Detected

PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 62       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 55       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 60       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 24       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 44       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 79       | 10 - 123 | 19 - 122 |

# SOUND ANALYTICAL SERVICES, INCL., INC.

Burlington Environmental, Technical Services Project: 624878-7306 Pier 91 Page 12 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-2

Client ID: CP108A-0493

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-12-93 Date Analyzed: 4-14-93

<u>Parameter</u> <u>Concentration, mg/L</u> <u>PQL</u> <u>Flag</u>

Total Petroleum
Fuel Hydrocarbons ND 0.75

SURROGATE RECOVERY, %
1-chlorooctane 105
o-terphenyl 112

TPH Per EPA Method 418.1 Date Extracted: 4-9-93 Date Analyzed: 4-9-93

Parameter Concentration, mg/L POL Flag

Total Petroleum
Hydrocarbons ND 1.0

ND - Not Detected PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. SERVICES, IN

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 13 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-3

Client ID: CP103B-0493

Volatile Organics by Method 8240 Date Analyzed: 4-10-93

| •                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |     |                                                                                                    |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------|----------------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                          | Concentration<br>ug/L                                    | PQL |                                                                                                    | Flag           |
| Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane | ND ND ND 1.2 0.90 ND |     | 10<br>10<br>10<br>10<br>50<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | B1, J<br>B1, J |

ND - Not Detected PQL - Practical Quantitation Limit

### SOUND ANALYTICAL SERVICES, INC. SERVICES, INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 14 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-3

8240 Continued .

Client ID: CP103B-0493

Concentration Flag POL uq/L Compound 5 ND Benzene ND 5 Trans-1,3-Dichloropropene 5 ND Bromoform 25 ND 4-Methyl-2-Pentanone

5 ND 2-Hexanone 5 ND Tetrachloroethene 5 1,1,2,2-Tetrachloroethane ND 5 ND Toluene ND 5 Chlorobenzene 5 ND Ethyl Benzene 5 ND Styrene 5 ND Total Xylenes

ND - Not Detected

PQL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 99       | 88 - 110 | 81 - 117 |
|                                                       | 97       | 86 - 115 | 74 - 121 |
|                                                       | 108      | 76 - 114 | 70 - 121 |

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 15 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-3

Client ID: CP103B-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-9-93 Date Analyzed: 4-12-93

| Compound                                                                                                                                                                                                                                                                                                                                            | Concentration ug/L | PQL                                        | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------|------|
| Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol |                    | PQL  11 11 11 11 11 11 11 11 11 11 11 11 1 | Flag |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                              | ND                 | 11                                         |      |
| Naphthalene                                                                                                                                                                                                                                                                                                                                         | ND<br>ND           | 11 21                                      |      |
| 4-Chloroaniline Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                 | ND                 | 11                                         |      |
| 4-Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                             | ND                 | 21                                         |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 16 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-3

Client ID: CP103B-0493

EPA Method 8270 Continued

| Compound                    | Concentration ug/L | PQL | Flag |
|-----------------------------|--------------------|-----|------|
| 2-Methylnaphthalene         | ND                 | 11  |      |
| Hexachlorocyclopentadiene   | ND                 | 11  |      |
| 2,4,6-Trichlorophenol       | ND                 | 11  |      |
| 2,4,5-Trichlorophenol       | ND                 | 11  |      |
| 2-Chloronaphthalene         | ND                 | 11  |      |
| 2-Nitroaniline              | ND                 | 53  |      |
| Dimethyl phthalate          | ND                 | 11  |      |
| Acenaphthylene              | ND                 | 11  |      |
| 2,6-Dinitrotoluene          | ND                 | 11  |      |
| 3-Nitroaniline              | ND                 | 53  |      |
| Acenaphthene                | ND                 | 11  |      |
| 2,4-Dinitrophenol           | ND                 | 53  |      |
| 4-Nitrophenol               | ND                 | 53  |      |
| Dibenzofuran                | ND                 | 11  |      |
| 2,4-Dinitrotoluene          | ND                 | 11  |      |
| Diethylphthalate            | ND                 | 11  |      |
| 4-Chlorophenyl phenyl ether | ND                 | 11  |      |
| Fluorene                    | ND                 | 11  |      |
| 4-Nitroaniline              | ND                 | 53  |      |
| 4,6-Dinitro-2-methylphenol  | ND                 | 53  |      |
| N-Nitrosodiphenylamine      | ND                 | 11  |      |
| 4-Bromophenyl phenyl ether  | ND                 | 11  |      |
| Hexachlorobenzene           | ND                 | 11  |      |
| Pentachlorophenol           | ND                 | 53  |      |
| Phenanthrene                | ND                 | 11  |      |
| Anthracene                  | ND                 | 11  |      |
| Di-n-butylphthalate         | 4.4                | 11  | J    |

ND - Not Detected

PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. SERVICES, INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 17 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-3

Benzo(g,h,i)perylene

Client ID: CP103B-0493

| EPA Method 8270 Continued                                                                                                                                                               | -                          |                                                    | 1    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------|------|
| Compound                                                                                                                                                                                | Concentration<br>ug/L      | PQL                                                | Flag |
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene | ND ND ND ND ND 11 ND ND ND | 11<br>11<br>21<br>11<br>11<br>11<br>11<br>11<br>11 |      |
| Benzo(a)pyrene<br>Indeno(1,2,3-cd)pyrene<br>Dibenz(a,h)anthracene                                                                                                                       | ND<br>ND<br>ND             | 11<br>11<br>11                                     |      |

ND

ND - Not Detected PQL - Practical Quantitation Limit

| Semi-Volatile Surroga Surrogate Compound                                                                                             | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 67       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 56       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 58       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 23       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 47       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 77       | 10 - 123 | 19 - 122 |

Continued . . . . .

11

## SOUND ANALYTICAL SERVICES, INC. ELABORES, INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 18 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-3

Client ID: CP103B-0493

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-12-93 Date Analyzed: 4-14-93

Parameter Concentration, mg/L POL Flag

Total Petroleum

Fuel Hydrocarbons ND 0.75

SURROGATE RECOVERY, %

1-chlorooctane 95 o-terphenyl 103

> TPH Per EPA Method 418.1 Date Extracted: 4-9-93

Date Analyzed: 4-9-93

<u>Parameter</u> <u>Concentration, mg/L</u> <u>PQL</u> <u>Flag</u>

Total Petroleum
Hydrocarbons ND

ND - Not Detected PQL - Practical Quantitation Limit

Continued . . . . .

1.0

## SOUND ANALYTICAL SERVICES, INC. ENGLISH INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 19 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-4

Client ID: CP103A-0493

Volatile Organics by Method 8240 Date Analyzed: 4-10-93

| Compound                                                                                                                                                                                                                                                                                                                                                                                          | Concentration ug/L                                        | PQL                                                                                                | Flag             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------|
| Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane | ND ND ND 10 21 2.1 ND | 20<br>20<br>20<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | J<br>B1<br>B1, J |

ND - Not Detected POL - Practical Quantitation Limit

## SOUND ANALYTICAL SERVICES, INCLUDED, INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 20 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-4

Client ID: CP103A-0493

8240 Continued . . .

| Compound                                                                                                                                                                          | Concentration ug/L                                                     | PQL                                                | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|------|
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | 2.2<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>4.3<br>ND<br>ND<br>ND<br>ND | 10<br>10<br>10<br>50<br>10<br>10<br>10<br>10<br>10 | J    |

ND - Not Detected

POL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 96       | 88 - 110 | 81 - 117 |
|                                                       | 99       | 86 - 115 | 74 - 121 |
|                                                       | 109      | 76 - 114 | 70 - 121 |

## SOUND ANALYTICAL SERVICES, INC. SERVICES, I.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 21 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-4

Client ID: CP103A-0493

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 4-9-93 Date Analyzed: 4-12-93

|                             | Concentration |     |      |
|-----------------------------|---------------|-----|------|
| Compound                    | ug/L          | PQL | Flag |
| Phenol                      | ND            | 9.9 |      |
| bis(2-Chloroethyl) ether    | ND            | 9.9 |      |
| 2-Chlorophenol              | ND            | 9.9 |      |
| 1,3-Dichlorobenzene         | ND            | 9.9 |      |
| 1,4-Dichlorobenzene         | ND            | 9.9 |      |
| Benzyl Alcohol              | ND            | 20  |      |
| 1,2-Dichlorobenzene         | ND            | 9.9 |      |
| 2-Methylphenol              | ND            | 9.9 |      |
| bis(2-Chloroisopropyl)ether | ND            | 9.9 |      |
| 4-Methylphenol              | 5.3           | 9.9 | J    |
| N-Nitroso-Di-N-propylamine  | ND            | 9.9 |      |
| Hexachloroethane            | ND            | 9.9 |      |
| Nitrobenzene                | ND            | 9.9 |      |
| Isophorone                  | ND            | 9.9 |      |
| 2-Nitrophenol               | ND            | 9.9 |      |
| 2,4-Dimethylphenol          | ND            | 9.9 |      |
| Benzoic Acid                | ND            | 50  |      |
| bis(2-Chloroethoxy)methane  | ND            | 9.9 |      |
| 2,4-Dichlorophenol          | ND            | 9.9 |      |
| 1,2,4-Trichlorobenzene      | ND            | 9.9 |      |
| Naphthalene                 | ND            | 9.9 |      |
| 4-Chloroaniline             | ND            | 20  |      |
| Hexachlorobutadiene         | ND            | 9.9 |      |
| 4-Chloro-3-methylphenol     | ND            | 20  |      |

ND - Not Detected

PQL - Practical Quantitation Limit

Continued . . . .

# SOUND ANALYTICAL SERVICES, ANC. ERVICES, INC.

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 22 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-4

Client ID: CP103A-0493

EPA Method 8270 Continued

| Compound   PQL   PQL   Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                                                    |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|------|
| ND   9.9   Part   Par | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | PQL                                                                | Flag |
| Di-n-butylphthalate 4.7 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene | ND N | 9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9 |      |

ND - Not Detected

PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, ANGUEVICES, AND

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 23 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-4

Client ID: CP103A-0493

| EPA Method 8270 Continued                                                                                                                                                                                                                                                |                                                              |                                                             |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------|
| Compound                                                                                                                                                                                                                                                                 | Concentration<br>ug/L                                        | PQL                                                         | Flag |
| Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene | ND ND ND ND ND ND 1.8 ND | 9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9<br>9.9 | J    |

ND - Not Detected PQL - Practical Quantitation Limit

Semi-Volatile Surrogates

| Surrogate Compound                                                                                                                   | Percent  | Control  | Limits   |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                                                                                                                                      | Recovery | Water    | Soil     |
| Nitrobenzene - d <sub>5</sub> 2-Fluorobiphenyl p-Terphenyl-d <sub>14</sub> Phenol-d <sub>6</sub> 2-Fluorophenol 2,4,6-Tribromophenol | 49       | 35 - 114 | 23 - 120 |
|                                                                                                                                      | 53       | 43 - 116 | 30 - 115 |
|                                                                                                                                      | 56       | 33 - 141 | 18 - 137 |
|                                                                                                                                      | 22       | 10 - 94  | 24 - 113 |
|                                                                                                                                      | 38       | 21 - 100 | 25 - 121 |
|                                                                                                                                      | 67       | 10 - 123 | 19 - 122 |

Continued . . . . .

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 24 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-4

Client ID: CP103A-0493

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 4-12-93 Date Analyzed: 4-14-93

<u>Parameter</u> <u>Concentration, mg/L</u> <u>PQL</u> <u>Flag</u>

Total Petroleum
Fuel Hydrocarbons ND 0.75

SURROGATE RECOVERY, %
1-chlorooctane 91
o-terphenyl 98

TPH Per EPA Method 418.1 Date Extracted: 4-9-93 Date Analyzed: 4-9-93

Parameter Concentration, mg/L PQL Flag

Total Petroleum
Hydrocarbons ND 1.0

ND - Not Detected PQL - Practical Quantitation Limit

Continued . . . .

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 25 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-5

Client ID: TRIP BLANK 2

Volatile Organics by Method 8240 Date Analyzed: 4-10-93

| Compound         Concentration ug/L         PQL         Flag           Chloromethane         ND         10         10           Bromomethane         ND         10         10           Vinyl Chloride         ND         10         10           Chloroethane         ND         10         10           Methylene Chloride         5.5         5         5           Acetone         0.92         50         J           Carbon Disulfide         ND         5         1,1-Dichloroethane         ND         5           1,1-Dichloroethane         ND         5         1         1,2-Dichloroethane         ND         5           1,2-Dichloroethane         ND         5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 |                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                                                                                |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------|------|
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Compound                                                                                                                                                                                                                                                                                                                                                      |                                                          | PQL                                                                                            | Flag |
| 1,1,2-Trichloroethane ND 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (Total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane | ND ND ND 5.5 0.92 ND | 10<br>10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | J    |

ND - Not Detected PQL - Practical Quantitation Limit

Continued . . .

## SOUND ANALYTICAL SERVICES, INC. SERVICES,

Burlington Environmental, Technical Services

Project: 624878-7306 Pier 91

Page 26 of 26 Lab No. 31280 April 15, 1993

Lab Sample No. 31280-5

Client ID: TRIP BLANK 2

8240 Continued . . .

| Compound                                                                                                                                                                          | Concentration ug/L                       | PQL                                   | Flag |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|------|
| Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl Benzene Styrene Total Xylenes | ND N | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |      |

ND - Not Detected

POL - Practical Quantitation Limit

Volatile Surrogates

| Surrogate                                             | Percent  | Control  | Limits   |
|-------------------------------------------------------|----------|----------|----------|
| Compound                                              | Recovery | Water    | Soil     |
| Toluene - D8 Bromofluorobenzene 1,2-Dichloroethane-D4 | 97       | 88 - 110 | 81 - 117 |
|                                                       | 98       | 86 - 115 | 74 - 121 |
|                                                       | 109      | 76 - 114 | 70 - 121 |

SOUND ANALYTICAL SERVICES

DENNIS L. BEAN

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### **OUALITY CONTROL REPORT**

### VOLATILE ORGANICS PER EPA METHOD 8240 Page 1 of 2

Burlington Environmental, Technical Services Client:

31280qc1 Lab No:

ug/L

Units: Date: April 15, 1993

Blank No: V9714

Date Analyzed: 4-10-93

| METHOD BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                                         |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------|--------|--|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result                 | PQL                                                     | Flags  |  |
| Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene | ND ND ND 3.8 2.3 ND ND | PQL  10 10 10 10 55 55 55 55 55 55 55 55 55 55 55 55 55 | J<br>J |  |
| Chlorobenzene Ethyl Benzene Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND<br>ND         | 5<br>5<br>5                                             |        |  |
| Total Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                     | 5                                                       |        |  |

ND - Not Detected

PQL - Practical Quantitation Limit

### **OUALITY CONTROL REPORT**

### VOLATILE ORGANICS PER EPA METHOD 8240

Page 2 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31280qc1

Date:

April 15, 1993

Blank No: V9714

Date Analyzed: 4-10-93

VOLATILE SURROGATES

| Surrogate                                             | Percent<br>Recovery | Contro   | l Limits<br>Soil |
|-------------------------------------------------------|---------------------|----------|------------------|
| Toluene - d8 Bromofluorobenzene 1,2-Dichloroethane d4 | 99                  | 86 - 115 | 81 - 117         |
|                                                       | 99                  | 76 - 114 | 74 - 121         |
|                                                       | 103                 | 88 - 110 | 70 - 121         |

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

VOLATILE ORGANICS PER EPA METHOD 8240 Page 1 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31280qc2

Units: ug/L Date: April 15, 1993

Blank No: V9759

Date Analyzed: 4-12-93

| MĘT                        | HOD BLANK |     |       |
|----------------------------|-----------|-----|-------|
| Compound                   | Result    | PQL | Flags |
| Chloromethane              | ND        | 10  |       |
| Bromomethane               | ND        | 10  |       |
| Vinyl Chloride             | ND        | 10  |       |
| Chloroethane               | ND        | 10  |       |
| Methylene Chloride         | 2.9       | 5   | J     |
| Acetone                    | ND        | 50  |       |
| Carbon Disulfide           | ND        | 5   |       |
| 1,1-Dichloroethene         | ND        | 5   |       |
| 1,1-Dichloroethane         | ND        | 5   |       |
| 1,2-Dichloroethene (Total) | ND        | 5   |       |
| Chloroform                 | ND        | 5   |       |
| 1,2-Dichloroethane         | ND        | 5   |       |
| 2-Butanone                 | ND        | 25  |       |
| 1,1,1-Trichloroethane      | ND        | 5   |       |
| Carbon Tetrachloride       | ND        | 5   |       |
| Vinyl Acetate              | ND        | 25  |       |
| Bromodichloromethane       | ND        | 5   |       |
| 1,2-Dichloropropane        | ND        | 5   |       |
| Cis-1,3-Dichloropropene    | ND        | 5   | 7     |
| Trichloroethene            | ND        | 5   |       |
| Dibromochloromethane       | ND        | 5   |       |
| 1,1,2-Trichloroethane      | ND        | 5   |       |
| Benzene                    | ND        | 5   |       |
| Trans-1,3-Dichloropropene  | ND        | 5   |       |
| Bromoform                  | ND        | 5   |       |
| 4-Methyl-2-Pentanone       | ND        | 25  |       |
| 2-Hexanone                 | ND        | 5   |       |
| Tetrachloroethene          | ND        | 5   |       |
| 1,1,2,2-Tetrachloroethane  | ND        | 5   |       |
| Toluene                    | ND        | 5   |       |
| Chlorobenzene              | ND        | 5   |       |
|                            | ND        | 5   |       |
| Ethyl Benzene              | ND        | 5   |       |
| Styrene                    | ND        | 5   |       |
| Total Xylenes              | 1112      |     | 1     |

ND - Not Detected

PQL - Practical Quantitation Limit

#### **OUALITY CONTROL REPORT**

### VOLATILE ORGANICS PER EPA METHOD 8240

Page 2 of 2

Client: Burlington Environmental, Technical Services

Lab No:

31280qc2

Date:

April 15, 1993

Blank No: V9759

Date Analyzed: 4-12-93

VOLATILE SURROGATES

|                                                       | Percent          | Contro                           | l Limits                         |
|-------------------------------------------------------|------------------|----------------------------------|----------------------------------|
| Surrogate                                             | Recovery         | Water                            | Soil                             |
| Toluene - d8 Bromofluorobenzene 1,2-Dichloroethane d4 | 101<br>90<br>113 | 86 - 115<br>76 - 114<br>88 - 110 | 81 - 117<br>74 - 121<br>70 - 121 |

## SOUND ANALYTICAL SERVICES, INC. BRAVICES, INC.

## SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### QUALITY CONTROL REPORT

#### VOLATILE ORGANICS - METHOD 8240

Client:

Burlington Environmental, Technical Services

Lab No:

31280qc3

Units:

ug/L

Date:

April 15, 1993

#### BLANK SPIKE RECOVERY

| Date Analyzed: 4-10-93 |                                  |                        |     |                                          |                        |     |     |      |
|------------------------|----------------------------------|------------------------|-----|------------------------------------------|------------------------|-----|-----|------|
| Parameter              | Blank<br>Spike<br>Result<br>(BS) | Spike<br>Added<br>(SA) | %R  | Blank<br>Spike<br>Dup<br>Result<br>(BSD) | Spike<br>Added<br>(SA) | %R  | RPD | Flag |
| 1,1-DCE                | 42                               | 50                     | 84  | 42                                       | 50                     | 84  | 0.0 |      |
| TCE                    | 51                               | 50                     | 102 | 51                                       | 50                     | 102 | 0.0 |      |
| Chloro-<br>benzene     | 50                               | 50                     | 100 | 49                                       | 50                     | 98  | 2.0 |      |
| Toluene                | 51                               | 50                     | 102 | 50                                       | 50                     | 100 | 2.0 |      |
| Benzene                | 49                               | 50                     | 98  | 48                                       | 50                     | 96  | 2.1 |      |

%R = Percent Recovery

 $= (BS / SA) \times 100$ 

RPD = Relative Percent Difference

 $= [(BS - BSD) / ((BS + BSD) / 2] \times 100$ 

| ADVISORY LIMITS RPD                                                             |                                                          |
|---------------------------------------------------------------------------------|----------------------------------------------------------|
| 1,1-Dichloroethene 22 Trichloroethene 24 Chlorobenzene 21 Toluene 21 Benzene 21 | 59 - 172<br>62 - 137<br>60 - 133<br>59 - 139<br>66 - 142 |

## SOUND ANALYTICAL SERVICES, INC. ANALYTICAL SERVICES, INC.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### QUALITY CONTROL REPORT

#### VOLATILE ORGANICS - METHOD 8240

Client:

Burlington Environmental, Technical Services

Lab No:

31280qc4

Units:

ug/L

Date:

April 15, 1993

#### BLANK SPIKE RECOVERY

| Date Analyzed: 4-12-93 |                                  |                        |     |                                          |                        |     |     |      |
|------------------------|----------------------------------|------------------------|-----|------------------------------------------|------------------------|-----|-----|------|
| Parameter              | Blank<br>Spike<br>Result<br>(BS) | Spike<br>Added<br>(SA) | %R  | Blank<br>Spike<br>Dup<br>Result<br>(BSD) | Spike<br>Added<br>(SA) | %R  | RPD | Flag |
| 1,1-DCE                | 43                               | 50                     | 86  | 43                                       | 50                     | 86  | 0.0 | 5    |
| TCE                    | 53                               | 50                     | 106 | 51                                       | 50                     | 102 | 3.8 |      |
| Chloro-<br>benzene     | 53                               | 50                     | 106 | 51                                       | 50                     | 102 | 3.8 |      |
| Toluene                | 54                               | 50                     | 108 | 52                                       | 50                     | 104 | 3.8 |      |
| Benzene                | 52                               | 50                     | 104 | 52                                       | 50                     | 104 | 0.0 |      |

%R = Percent Recovery

 $= (BS / SA) \times 100$ 

RPD = Relative Percent Difference

 $= [(BS - BSD) / ((BS + BSD) / 2] \times 100$ 

| ADVISORY LIMITS                  | RPD      | <pre>% RECOVERY</pre> |
|----------------------------------|----------|-----------------------|
| 1,1-Dichloroethene               | 22       | 59 - 172<br>62 - 137  |
| Trichloroethene<br>Chlorobenzene | 24<br>21 | 60 - 133              |
| Toluene                          | 21       | 59 - 139              |
| Benzene                          | 21       | 66 - 142              |

# SOUND ANALYTICAL SERVICES, ANCHER VIOLES, ANCHER VI

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

### QUALITY CONTROL REPORT

TPH by Method 418.1

Client:

Burlington Environmental, Technical Services

Lab No:

31280qc5

Matrix:

Water

Units:

mg/L

Date:

April 15, 1993

#### METHOD BLANK

| Parameter                       | Result | PQL |
|---------------------------------|--------|-----|
| Total Petroleum<br>Hydrocarbons | ND     | 1.0 |

ND - Not Detected PQL - Practical Quantitation Limit

### BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY

| Parameter | Sample<br>Result<br>(SR) | Spiked<br>Sample<br>Result<br>(BS) | Spike<br>Added<br>(SA) | BS<br>%R | Spike<br>Dup<br>Result<br>(BSD) | MSD<br>%R | RPD | Flag |
|-----------|--------------------------|------------------------------------|------------------------|----------|---------------------------------|-----------|-----|------|
| ТРН       | ND                       | 91                                 | 100                    | 91       | 87                              | 87        | 4.5 |      |

%R = Percent Recovery
= [(BS - SR) / SA] x 100

RPD = Relative Percent Difference
= [(BS - BSD) / ((BS + BSD) / 2)] x 100

## SOUND ANALYSTICAL SERVICES, INC. SERVICES, J.

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 1 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31280qc6

Matrix:

Water

Units:

mg/L

Date:

April 15, 1993

#### DUPLICATE

| Dup. No. 31280-1                               |               |                  |     |      |       |
|------------------------------------------------|---------------|------------------|-----|------|-------|
| Parameter                                      | Sample<br>(S) | Duplicate<br>(D) | RPD | PQL  | Flags |
| Total Petroleum<br>Fuel Hydrocarbons           | ND            | ND               | 0.0 | 0.75 |       |
| SURROGATE RECOVERY% 1-chlorooctane o-terphenyl | 80<br>102     | 57<br>89         |     |      |       |

RPD = relative percent difference =  $[(S - D) / ((S + D) / 2)] \times 100$ 

#### MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

| MS/MSD No. 31280-1                   |                          |                                    |                        |    |                                 |     |
|--------------------------------------|--------------------------|------------------------------------|------------------------|----|---------------------------------|-----|
| Parameter                            | Sample<br>Result<br>(SR) | Spiked<br>Sample<br>Result<br>(MS) | Spike<br>Added<br>(SA) | %R | Spike<br>Dup<br>Result<br>(MSD) | RPD |
| Total Petroleum<br>Fuel Hydrocarbons | ND                       | 352                                | 402                    | 88 | 345                             | 1.9 |

## SOUND ANALYTICAL SERVICES, INC. SERVICES,

### QUALITY CONTROL REPORT

### Total Petroleum Fuel Hydrocarbons by Method 8015

Page 2 of 2

Client:

Burlington Environmental, Technical Services

Lab No:

31280qc6

Units:

mg/L

Date:

April 15, 1993

#### BLANK SPIKE RECOVERY

| BS No. 032R0101.D                    |                     |                            |     |
|--------------------------------------|---------------------|----------------------------|-----|
| Parameter                            | Spike Added<br>(SA) | Spike<br>Recovered<br>(SR) | %R  |
| Total Petroleum<br>Fuel Hydrocarbons | 402                 | 406                        | 101 |

%R = Percent Recovery
= ( SR / SA ) x 100

#### METHOD BLANK

| Blank No. 011R0101.D                           |           |      |
|------------------------------------------------|-----------|------|
| Parameter                                      | Result    | PQL  |
| Total Petroleum<br>Fuel Hydrocarbons           | ND        | 0.75 |
| SURROGATE RECOVERY% 1-chlorooctane o-terphenyl | 96<br>111 |      |

ND - Not Detected PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SERVICES, INC. SERVICES, I

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### WATER MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name:

Burlington Environmental, Technical Services

Lab No:

31280qc7

Date:

April 15, 1993

| SEMI-VOLATILE ORGANICS    |              |                  |            |          |             |          |     |       |  |
|---------------------------|--------------|------------------|------------|----------|-------------|----------|-----|-------|--|
| COMPOUND                  | SPIKE (ug/L) | SAMPLE<br>RESULT | CONC<br>MS | %<br>REC | CONC<br>MSD | %<br>REC | RPD | FLAGS |  |
| Phenol                    | 100          | ND               | 23         | 23       | 25          | 25       | 5.9 |       |  |
| 2-Chlorophenol            | 100          | ND               | 56         | 56       | 56          | 56       | 0.0 |       |  |
| 1,4-Dichlorobenzene       | 100          | ND               | 39         | 39       | 42          | 42       | 6.7 |       |  |
| N-nitrosodi-n-Propylamine | 100          | ND               | 54         | 54       | 60          | 60       | 10  |       |  |
| 1,2,4-Trichlorobenzene    | 100          | ND               | 45         | 45       | 49          | 49       | 7.5 |       |  |
| 4-Chloro-3-Methylphenol   | 100          | ND               | 57         | 57       | 57          | 57       | 0.0 |       |  |
| Acenaphthene              | 100          | ND               | 49         | 49       | 53          | 53       | 7.0 |       |  |
| 4-Nitrophenol             | 100          | ND               | 21         | 21       | 23          | 23       | 12  |       |  |
| 2,4 Dinitrotoluene        | 100          | ND               | 54         | 54       | 59          | 59       | 7.6 |       |  |
| Pentachlorophenol         | 100          | ND               | 43         | 43       | 46          | 46       | 6.7 |       |  |
| Pyrene                    | 100          | ND               | 59         | 59       | 61          | 61       | 3.2 |       |  |

RPD = Relative Percent Difference

| ADVISORY LIMITS:                          | RPD            | <pre>% RECOVERY</pre>          |
|-------------------------------------------|----------------|--------------------------------|
| Phenol 2-Chlorophenol 1,4-Dichlorobenzene | 42<br>40<br>28 | 12 - 89<br>27 - 123<br>36 - 97 |
| N-nitrosodi-n-                            | 20             | 30 37                          |
| Propylamine                               | 38             | 41 - 116                       |
| 1,2,4-Trichlorobenzene                    | 28             | 39 - 98                        |
| 4-Chloro-3-Methylphenol                   | 42<br>31       | 23 - 97<br>46 - 118            |
| Acenaphthene<br>4-Nitrophenol             | 50             | 10 - 80                        |
| 2,4 Dinitrotoluene                        | 38             | 24 - 96                        |
| Pentachlorophenol                         | 50             | 9 - 103                        |
| Pyrene                                    | 31             | 26 - 127                       |

<sup>%</sup> REC = Percent Recovery

## SOUND ANALYTICAL SERVICES, INC. TO SOURCE, INC.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 1 of 3

Client:

Burlington Environmental, Technical Services

METHOD BLANK

Lab No:

31280qc8

Units:

uq/L

Date:

April 15, 1993

Blank No: SBLK84-S8379

| METHOL                                | BLANK  |     |       |
|---------------------------------------|--------|-----|-------|
| Compound                              | Result | PQL | Flags |
| Phenol                                | ND     | 10  |       |
| bis(2-Chloroethyl) ether              | ND     | 10  |       |
| 2-Chlorophenol                        | ND     | 10  |       |
| 1,3-Dichlorobenzene                   | ND     | 10  |       |
| 1,4-Dichlorobenzene                   | ND     | 10  |       |
| Benzyl Alcohol                        | ND     | 20  |       |
| 1,2-Dichlorobenzene                   | ND     | 10  |       |
| 2-Methylphenol                        | ND     | 10  |       |
| bis(2-Chloroisopropyl)ether           | ND     | 10  |       |
| 4-Methylphenol                        | ND     | 10  |       |
| N-Nitroso-Di-N-propylamine            | ND     | 10  |       |
| Hexachloroethane                      | ND     | 10  |       |
| Nitrobenzene                          | ND     | 10  |       |
| Isophorone                            | ND     | 10  |       |
| 2-Nitrophenol                         | ND     | 10  |       |
| 2,4-Dimethylphenol                    | ND     | 10  |       |
| Benzoic Acid                          | ND     | 50  |       |
| bis(2-Chloroethoxy)methane            | ND     | 10  |       |
| 2,4-Dichlorophenol                    | ND     | 10  |       |
| 1,2,4-Trichlorobenzene                | ND     | 10  |       |
| Naphthalene                           | ND     | 10  |       |
| 4-Chloroaniline                       | ND     | 20  |       |
| Hexachlorobutadiene                   | ND     | 10  |       |
| 4-Chloro-3-methylphenol               | ND     | 20  |       |
| 2-Methylnaphthalene                   | ND     | 10  |       |
| Hexachlorocyclopentadiene             | ND     | 10  |       |
| 2,4,6-Trichlorophenol                 | ND     | 10  |       |
| 2,4,5-Trichlorophenol                 | ND     | 10  |       |
| 2-Chloronaphthalene                   | ND     | 10  |       |
| 2-Chioronaphthalene<br>2-Nitroaniline | ND     | 50  |       |
| Dimethyl phthalate                    | ND     | 10  |       |
| Acenaphthylene                        | ND     | 10  |       |

PQL - Practical Quantitation Limit

# SOUND ANALYTICAL SÉRVICES, INC. SURCA CES, IN

### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 2 of 3

Client:

Burlington Environmental, Technical Services

Lab No:

31280qc8

Units:

ug/L

Date:

April 15, 1993

Blank No: SBLK84-S8379

| METHOD | BLANK |
|--------|-------|
|--------|-------|

| METHOD BLANK                |        |     |       |  |  |  |  |  |  |  |
|-----------------------------|--------|-----|-------|--|--|--|--|--|--|--|
| Compound                    | Result | PQL | Flags |  |  |  |  |  |  |  |
| 3-Nitroaniline              | ND     | 50  |       |  |  |  |  |  |  |  |
| Acenaphthene                | ND     | 10  |       |  |  |  |  |  |  |  |
| 2,4-Dinitrophenol           | ND     | 50  |       |  |  |  |  |  |  |  |
| 4-Nitrophenol               | ND     | 50  |       |  |  |  |  |  |  |  |
| Dibenzofuran                | ND     | 10  |       |  |  |  |  |  |  |  |
| 2,4-Dinitrotoluene          | ND     | 10  |       |  |  |  |  |  |  |  |
| 2,6-Dinitrotoluene          | ND     | 10  |       |  |  |  |  |  |  |  |
| Diethylphthalate            | ND     | 10  |       |  |  |  |  |  |  |  |
| 4-Chlorophenyl phenyl ether |        | 10  |       |  |  |  |  |  |  |  |
| Fluorene                    | ND     | 10  |       |  |  |  |  |  |  |  |
| 4-Nitroaniline              | ND     | 50  |       |  |  |  |  |  |  |  |
| 4,6-Dinitro-2-methylphenol  | ND     | 50  |       |  |  |  |  |  |  |  |
| N-Nitrosodiphenylamine      | ND     | 10  |       |  |  |  |  |  |  |  |
| 4-Bromophenyl phenyl ether  | ND     | 10  |       |  |  |  |  |  |  |  |
| Hexachlorobenzene           | ND     | 10  |       |  |  |  |  |  |  |  |
| Pentachlorophenol           | ND     | 50  |       |  |  |  |  |  |  |  |
| Phenanthrene                | ND     | 10  |       |  |  |  |  |  |  |  |
| Anthracene                  | ND     | 10  |       |  |  |  |  |  |  |  |
| Di-n-butylphthalate         | ND     | 10  |       |  |  |  |  |  |  |  |
| Fluoranthene                | ND     | 10  |       |  |  |  |  |  |  |  |
| Pyrene                      | ND     | 10  |       |  |  |  |  |  |  |  |
| Butyl benzyl phthalate      | ND     | 10  |       |  |  |  |  |  |  |  |
| 3,3'-Dichlorobenzidine      | ND     | 20  |       |  |  |  |  |  |  |  |
| Benzo(a)anthracene          | ND     | 10  |       |  |  |  |  |  |  |  |
| bis(2-ethylhexyl)phthalate  | ND     | 10  |       |  |  |  |  |  |  |  |
| Chrysene                    | ND     | 10  |       |  |  |  |  |  |  |  |
| Di-n-octyl phthalate        | ND     | 10  |       |  |  |  |  |  |  |  |
| Benzo(b)fluoranthene        | ND     | 10  |       |  |  |  |  |  |  |  |
| Benzo(k)fluoranthene        | ND     | 10  |       |  |  |  |  |  |  |  |
| Benzo(a)pyrene              | ND     | 10  |       |  |  |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene      | ND     | 10  |       |  |  |  |  |  |  |  |
| Dibenz(a,h)anthracene       | ND     | 10  |       |  |  |  |  |  |  |  |
| Benzo(g,h,i)perylene        | ND     | 10  |       |  |  |  |  |  |  |  |
| Donies (g/n/1/Porficero     |        |     |       |  |  |  |  |  |  |  |

PQL - Practical Quantitation Limit

### QUALITY CONTROL REPORT

### SEMIVOLATILE ORGANICS PER EPA METHOD 8270

Page 3 of 3

Client:

Burlington Environmental, Technical Services

Lab No: 31280qc8

Date:

April 15, 1993 Blank No: SBLK84-S8379

|                   | res      |          |          |
|-------------------|----------|----------|----------|
| Surrogate         | Percent  | Control  | Limits   |
|                   | Recovery | Water    | Soil     |
| Nitrobenzene - d5 | 80       | 35 - 114 | 23 - 120 |
| 2-Fluorobiphenyl  | 61       | 43 - 116 | 30 - 115 |
| p-Terphenyl-d14   | 73       | 33 - 141 | 18 - 137 |
| Phenol-d6         | 35       | 10 - 94  | 24 - 113 |
| 2-Fluorophenol    | 53       | 21 - 100 | 25 - 121 |
| 2,4,6-TBP         | 71       | 10 - 123 | 19 - 122 |

## SOUND ANALYTICAL SERVICES, INC. SERVICES.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

#### DATA QUALIFIER FLAGS

Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation ND: limit, corrected for sample dilution. The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. J: The identification of this analyte was confirmed by GC/MS. C: This analyte was also detected in the associated method blank. The reported sample results have been adjusted for moisture, B1: final exract volume, and/or dilutions performed during extract preparation. The analyte concentration was evaluated prior to sample preparation adjustments, and was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank). This analyte was also detected in the associated method blank. However, the analyte concentration in the sample was B2: determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). The concentration of this analyte exceeded the instrument calibration range. E: The reported result for this analyte is calculated based on a secondary dilution factor. D: This TIC is a suspected aldol-condensation product. A: Quantitation Limits are elevated due to matrix interferences. M: The calibration quality control criteria for this compound were not met. The reported concentration should be considered an S: estimated quantity. Contaminant does not appear to be "typical" product. Elution pattern suggests it may be X1: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. X2: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended. X3: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous. X4: RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit. X4a: X5: Matrix spike was diluted out during analysis. Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results. X6: Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data. X7: RPD value for MS/MSD outside QC limits due to high contaminant levels. X7a: X8: Surrogate was diluted out during analysis.

Surrogate recovery outside QC limits due to matrix composition.

Surrogate recovery outside QC limits due to high contaminant levels.

X9:

X10:

### CHAIN OF CUSTODY



210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173

### CHAIN-OF-CUSTODY RECORD

C.O.C. SERIAL NO. 6225

| 618/281-51    | 20 FAX      |       | _     |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
|---------------|-------------|-------|-------|-------------|-----------------|----------------------|-------|-------|------|------|------|-------------------------------------------|--------|-----|----------|--------|--------------|---------------------------------|-------------|
| PROJEC        | TNAME B     | EINC. | Pi    | 20          | 91              |                      |       | 4 00  | /    | / /  | /W   | \Q\                                       | / /    | / / |          | RESER- |              |                                 |             |
| PROJEC        | T NUMBER    | 5248  | 78    |             | MAJOR TASK 7306 | S                    | 1 60  | \Z    |      | (/   | V 4  | 7                                         |        |     | / V/     | TIVES  |              |                                 |             |
| SAMPLE        |             | Wah   | e C   | -           |                 | _ <u>~</u>           | A TAR | 7/4   | by - |      |      | 7                                         |        |     | / /      | , /    |              | MARKS                           |             |
| LAB-DE        | STINATION < | Sound |       |             | Itiza.          | 무절                   |       | / VX  | 4    | Y. K | ′c/  |                                           |        |     | 1        | @/     | (CHEMICAL AN | NALYSIS REQUE<br>ER IF APPLICAB | EST<br>ILE) |
| SAMPLE<br>NO. | DATE        | TIME  | Sylve | Spage       | SAMPLE LOCATION | NO. OF<br>CONTAINERS | 1     | XX.   | × 1  |      | Dy.  |                                           |        | / 3 | CHEMICAL | 9      |              |                                 | ,           |
|               | 4-6-93      | 0900  |       |             | CP-108-B-0493   | 5                    | 1     | 1     | 1    | 1    |      |                                           |        |     |          |        |              |                                 |             |
|               | 4-6-93      | 1130  |       |             | CP-108-A-0493   |                      | 1     | V     | 1    | J    |      |                                           |        |     |          |        |              |                                 |             |
|               | 4-6-93      | 1340  |       |             | CP-103-B-0493   | 3 5                  | 1     | 1     | 1    | 1    |      |                                           |        |     |          |        | -            |                                 |             |
| 1             | 4-6-93      | 1510  |       |             | CP-103-A-0493   | 5                    | 1     | 1     | 1    | 1    |      |                                           |        |     |          |        |              |                                 |             |
| 3             |             |       |       |             | Trip blank #2   | 2                    | X     |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
| * 7           |             |       |       |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
| ;             |             |       |       |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
|               |             |       |       |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
| - 1           |             |       |       |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
|               |             |       |       |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
|               |             |       |       |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
|               |             |       |       |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
|               |             |       |       |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
|               |             |       | 1     |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
| RELINO        | UISHED BY   | i     | 1     | -           | ř               |                      |       |       | REC  | EIVE | ) BY |                                           |        |     |          |        |              |                                 |             |
| (100),10      |             | Şic   | SNATU | IRE         |                 | DATE                 | Т     | IME   |      | 1    | 2    | ,                                         |        | SIG | NATURE   |        |              | DATE                            | TIME        |
|               | 1 //        | 1/2   | M.    |             |                 | 4-6-93               | 16    | 45    | -    | 1 11 | all  | 2                                         | $\leq$ | 1   |          |        | 4            | 4-7-93                          | 9:30 A      |
| X             | Wall        | MA    |       |             |                 |                      |       |       | 1    | 710  |      | 6                                         |        | 4-  |          |        |              |                                 |             |
|               | 10 alm      | 1     | \     | -           | 4               | -7-97                | 5/0   | 1:201 | 7    |      | ı    | $(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ |        | 7   |          |        |              | 4/7/43                          | 9:301       |
|               |             |       | •     |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
|               |             |       |       | <del></del> |                 |                      | -     |       | -    |      |      |                                           |        |     |          |        |              |                                 |             |
|               |             |       | 1     |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
| SHIPP         | ING NOTES   | DIVI  |       | P.          | y Sound Analyti | 2./1                 | 2     |       | LA   | B NO | ES   |                                           |        |     |          |        |              |                                 |             |
|               | 1           | TChea | up    | P           | y sound minight | ara                  | Julia |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
|               |             |       |       | 1           | /               |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |
|               |             |       |       |             |                 |                      |       |       |      |      |      |                                           |        |     |          |        |              |                                 |             |